精英家教网 > 初中数学 > 题目详情
如图,AO是△ABC的中线,⊙O与AB边相切于点D.
(1)要使⊙O与AC边也相切,应增加条件______;(任写一个)
(2)说明你(1)中添加的理由.
(1)AB=AC(或∠B=∠C或AO平分∠BAC或AO⊥BC).
故填:AB=AC(或∠B=∠C或AO平分∠BAC或AO⊥BC);

(2)证明:过O作OE⊥AC于E,连OD;
∵AB切⊙O于D,
∴OD⊥AB.
∵AB=AC,AO是BC边上中线,
∴OA平分∠BAC,
又∵OD⊥AB于D,OE⊥AC于E,
∴OE=OD,
∴AC是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,等边△ABC的边长为6,BC在x轴上,BC边上的高线AO在y轴上,直线l绕点A转动(与线段BC没有交点).设与AB、l、x轴相切的⊙O1的半径为r1,与AC、l、x轴相切的⊙O2半径为r2
(1)求两圆的半径之和;
(2)探索直线l绕点A转动到什么位置时两圆的面积之和最小?最小值是多少?
(3)若r1-r2=
3
,求经过点O1、O2的一次函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:①点F是BD中点;②CG是⊙O的切线;
(2)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,在正方形ABCD中,AB=1,
AC
是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=
5
6
时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

⊙O的圆心到直线l的距离为3cm,⊙O的半径为1cm,将直线l向垂直于l的方向平移,使l与⊙O相切,则平移的距离是(  )
A.1cmB.2cmC.4cmD.2cm或4cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA,PB分别是⊙O的切线,A,B分别为切点,点E是⊙O上一点,且∠AEB=60°,则∠P为(  )
A.120°B.60°C.30°D.45°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以
3
cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.
(1)当P异于A、C时,请说明PQBC;
(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC中,∠ACB=90°,AB=4,⊙C的半径长是2,当∠A=30°时,⊙C与直线AB的位置关系是______;当∠A=45°时,⊙C与直线AB的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA与⊙O相切于点A,PC经过⊙O的圆心且与该圆相交于两点B、C,若PA=4,PB=2,则sinP=______.

查看答案和解析>>

同步练习册答案