【题目】“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的只火腿粽子和只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.
请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?
若妈妈从盒中取出火腿粽子只、豆沙粽子只送爷爷和奶奶后,再让小亮从盒中不放回地任取只,问恰有火腿粽子、豆沙粽子各只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)
【答案】(1)第一次爸爸买了4只火腿粽子,8只豆沙粽子;(2).
【解析】
(1)等量关系为:原来的火腿粽子数÷原来的总粽子数=;后来的火腿粽子数÷后来的总粽子数=;
(2)列举出所有情况,看所求的情况占所有情况的概率如何.
(1)设第一次爸爸买了x只火腿粽子,y只豆沙粽子.根据题意得:
,解得:.
经检验得出:x+y≠0,x+y+6≠0,∴x=4,y=8是原方程的根.
答:第一次爸爸买了4只火腿粽子,8只豆沙粽子.
(2)现在有火腿粽子9只,豆沙粽子9只,送给爷爷,奶奶后,还有火腿粽子5只,豆沙粽子3只.
记豆沙粽子a,b,c;火腿粽子1,2,3,4,5.恰好火腿粽子、豆沙粽子各1只的概率为=.
科目:初中数学 来源: 题型:
【题目】如图,是边长为6的等边三角形,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于.
(1)当时,求的长;
(2)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果发生改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①;②AG=GC;③BE+DF=EF;④.其中正确的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB、y轴上的动点,当△CDE周长最小时,点D的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请作出△ABC关于y轴对称的△A1B1C1;
(2)△A1B1C1的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.
(1)如图1,若∠BAC=60°,点F与点C重合,
①求证:AF=AE+AD.
②求证:AD∥BC.
(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.
(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).
(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P (尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是 .
(3)等边三角形的巧妙点的个数有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是( )
A. B. C. 6 D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com