精英家教网 > 初中数学 > 题目详情
已知:在平面直角坐标系xOy中,抛物线y=x2+bx+c经过A(1,1)、B(0,4)两点,M为抛物线的顶点.
(1)求这条抛物线的表达式及顶点M的坐标;
(2)设由(1)求得的抛物线的对称轴为直线l,点A关于直线l的对称点为点C,AC与直线l相交于点D,联结OD、OC.请直接写出C与D两点的坐标,并求∠COM+∠DOM的度数.
(1)由抛物线y=x2+bx+c经过A(1,1)、B(0,4)两点,
1+b+c=1
c=4.

解得
b=-4
c=4.

∴所求抛物线的表达式为y=x2-4x+4.
由y=x2-4x+4,得y=(x-2)2
即得该抛物线的顶点M的坐标为(2,0).

(2)由(1)得抛物线的对称轴是直线x=2.
根据题意,C与D两点的坐标分别是C(3,1)、D(2,1).
设点D关于x轴的对称点为点E,连接OE,CE.
则点E的坐标为E(2,-1),且∠DOM=∠EOM.
利用两点间距离公式,
OC=
32+12
=
10

OE=
22+(-1)2
=
5

CE=
(3-2)2+(1+1)2
=
5

∴OE=CE,OC2=10,OE2+CE2=5+5=10.
即得OE2+CE2=OC2
∴∠OEC=90°
于是,由OE=CE,得∠COE=45°.
即得∠COM+∠DOM=∠COE=45°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax2+bx+c中,若a:b:c=1:4:3,且该函数的最小值是-3,则解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H、B关于直线l:y=
3
3
x+
3
对称,过点B作直线BKAH交直线l于K点.
(1)求A、B两点坐标,并证明点A在直线l上;
(2)求此抛物线的解析式;
(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,直接写出NK的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图象分析,a的值等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=(x-1)2-1(0≤x≤3)的图象,如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是(  )
A.有最小值0,有最大值3B.有最小值-1,有最大值0
C.有最小值-1,有最大值3D.有最小值-1,无最大值

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,ABDC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.
(1)用含有x的代数式表示BF的长.
(2)设四边形DEBG的面积为S,求S与x的函数关系式.
(3)当x为何值时,S有最大值,并求出这个最大值.
[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(-
b
2a
4ac-b2
4a
)].

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=
1
2
x2-
5
2
x与x轴交于O,A两点.半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动.设点P的横坐标为t.
(1)点Q的横坐标是______(用含t的代数式表示);
(2)若⊙P与⊙Q相离,则t的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
.)

查看答案和解析>>

同步练习册答案