精英家教网 > 初中数学 > 题目详情
如图,在△ABC和△FED中,∠C=∠D,∠B=∠E,如果由“ASA”可以判定△ABC≌FED,则需补充条件
BC=ED
BC=ED
分析:需补充条件BC=DE,因为题目给定的判定全等的方法是ASA,根据已知∠C=∠D,∠B=∠E,因此要补充的条件是夹边CB=DE.
解答:解:需补充条件BC=DE,
∵在△ABC和△FED中,
∠C=∠D
BC=DE
∠B=∠E

∴△ABC≌△FED(SAS),
故答案为:BC=DE.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知,如图,在△ABC和△EDB中,∠ACB=∠EBD=90°,点E在BC上,DE⊥AB交AB于F,且AB=ED.求证:DB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=mAC(m>1).试探索线段EF与AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB边上的中点.则DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,请说明AE=BD的理由.

查看答案和解析>>

同步练习册答案