精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AM是高,D,G分别在AB,AC上,E,F在BC上,四边形DEFG是矩形,AM=6,BC=12,若设矩形的边GF=x,DG=y.
(1)请你写出y与x之间的函数关系式,并注明x的取值范围;
(2)当x取何值时,矩形DEFG变为正方形?并求出此时S△ADG:S△ABC的值.

解:(1)根据题意得AN=AM-MN=6-x,
∵四边形DEFG是矩形,
∴DG∥BC,
∴△ADG∽△ABC,
∴DG:BC=AN:AM,即y:12=(x-6):6,
∴y=2x-12(0<x<6);

(2)∵当DG=GF时,四边形DEFG是正方形,
∴y=x,即2x-12=x,
∴x=4,
∴y=4,
∵△ADG∽△ABC,
∴S△ADG:S△ABC=DG2:BC2=16:144=1:9.
分析:(1)先用x表示AN=6-x,易得△ADG∽△ABC,则DG:BC=AN:AM,于是可得到y=2x-12(0<x<6);
(2)由于四边形DEFG是矩形,则当DG=GF时,四边形DEFG是正方形,所以y=x,即2x-12=x,可解得x=y=4,然后根据三角形相似的性质得到S△ADG:S△ABC=DG2:BC2=16:144=1:9.
点评:本题考查了相似三角形的判定与性质:平行于三角形一边的直线与其他两边所截的三角形与原三角形相似;相似三角形对应边的比等于相等,都等于相似比;相似三角形面积的比等于相似比的平方.也考查了矩形的性质以及正方形的判定方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案