精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线y-x+2分别交x轴、y轴于点AB,抛物线y=﹣x2+bx+c经过点AB.点Px轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m

1)点A的坐标为   

2)求这条抛物线所对应的函数表达式.

3)点P在线段OA上时,若以BEF为顶点的三角形与△FPA相似,求m的值.

4)若EFP三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称EFP三点为“共谐点”.直接写出EFP三点成为“共谐点”时m的值.

【答案】(1)(4,0)(2)y=﹣x2+x+2(3)(4)﹣1或﹣

【解析】

(1)令y=0,即可求出交点坐标,

(2)将A(4,0),B(0,2)代入y=﹣x2+bx+c中,即可求出函数解析式,(3)根据分类讨论,,即可求解,(4)根据当F为线段PE的中点时,当P为线段FE的中点时,当E为线段FP的中点时分类讨论解题即可.

(1)在y=-x+2中,令y=0,则x=4,

∴A(4,0);

故答案为:(4,0);

(2)∵在y=-x+2中,令x=0,则y=2,

∴B(0,2),

把A(4,0),B(0,2)代入y=﹣x2+bx+c,得b=

∴这条抛物线所对应的函数表达式为y=﹣x2+x+2;

(3)∵P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),

且∠BFE=∠AEP,

∴∠BEP=∠APF=90°或∠EBF=∠APF=90°,

则有BE⊥PE,

∴E点的纵坐标为2,

解得m=0(舍去)或m=

如图1,过点E作EC⊥y轴于点C,

则∠EBC+∠BEC=90°,EC=m,BC=﹣m2+m+2﹣2=﹣m2+m,

∵∠EBF=90°,

∴∠EBC+∠ABO=90°,

∴∠ABO=∠BEC,

∴Rt△ECB∽Rt△BOA,

,

,解得m=0(舍去)或m=

解得,m=

综上所述,以B、E、F为顶点的三角形与△FPA相似,m的值=

(4)由(1)知,P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),

∵E、F、P三点为“共谐点”,

∴有F为线段PE的中点、P为线段FE的中点或E为线段PF的中点,

当F为线段PE的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=4(三点重合,舍去)或m=

当P为线段FE的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=4(舍去)或m=﹣1;

当E为线段FP的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=4(舍去)或m=﹣

综上可知当E、F、P三点成为“共谐点”时m的值为﹣1或﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AT是⊙O的切线,ODBC于点D,并且AT=10cmAC=20cmOD=4cm,则半径OC=(  )

A. 8.5cm B. 8cm C. 9.5cm D. 9cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(定义)如图1,A,B为直线l同侧的两点,过点A作直线l的对称点,连接B交直线l于点P,连接AP,则称点P为点A,B关于直线等角点”.

(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(-2,-)两点.

(1)C(4,),D(4,),E(4,)三点中,点  是点A,B关于直线x=4的等角点;

(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,APB=α,求证:

(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC.

(1)求AC的长;

(2)先将△ABC向右平移2个单位得到△A′B′C′,写出A点的对应点A′的坐标;

(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,写出A点对应点A1的坐标.

(4)求点A到A′所画过痕迹的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A1A2A3,…都在y轴上,对应的纵坐标分别为123,….直线l1l2l3,…分别经过点A1A2A3,…,且都平行于x轴.以点O为圆心,半径为2的圆与直线l1在第一象限交于点B1,以点O为圆心,半径为3的圆与直线l2在第一象限交于点B2,…,依此规律得到一系列点Bnn为正整数),则点B1的坐标为_____,点Bn的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBC,ABBC,AB=3.E为射线 BC上一个动点,连接AE,将ABE沿AE折叠,点B落在点B′处,过点B′AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为__________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC,∠C=90°,以点B为圆心,任意长为半径画弧,分别交ABBC于点MN分别以点MN为圆心,以大于MN的长度为半径画弧两弧相交于点P过点P作线段BD,AC于点D,过点DDE⊥AB于点E,则下列结论①CD=ED②∠ABD=∠ABC③BC=BE④AE=BE中,一定正确的是(

A. B. ① ② ④C. ①③④D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△ABC′,连接BB′,若AC′∥BB′,则∠CAB′的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司开发出一款新的节能产品,该产品的成本价为6/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中时间每增加1天,日销售量减少5件.

1)第17天的日销售量是   件,日销售利润是   元.

2)求试销售期间日销售利润的最大值.

查看答案和解析>>

同步练习册答案