【题目】如图,在平面直角坐标系中,直线y=-x+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.
(1)点A的坐标为 .
(2)求这条抛物线所对应的函数表达式.
(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.
(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.
【答案】(1)(4,0)(2)y=﹣x2+x+2(3),(4)﹣1或﹣或
【解析】
(1)令y=0,即可求出交点坐标,
(2)将A(4,0),B(0,2)代入y=﹣x2+bx+c中,即可求出函数解析式,(3)根据分类讨论,得得,即可求解,(4)根据当F为线段PE的中点时,当P为线段FE的中点时,当E为线段FP的中点时分类讨论解题即可.
(1)在y=-x+2中,令y=0,则x=4,
∴A(4,0);
故答案为:(4,0);
(2)∵在y=-x+2中,令x=0,则y=2,
∴B(0,2),
把A(4,0),B(0,2)代入y=﹣x2+bx+c,得b=,
∴这条抛物线所对应的函数表达式为y=﹣x2+x+2;
(3)∵P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),
∵且∠BFE=∠AEP,
∴∠BEP=∠APF=90°或∠EBF=∠APF=90°,
则有BE⊥PE,
∴E点的纵坐标为2,
∴解得m=0(舍去)或m=,
如图1,过点E作EC⊥y轴于点C,
则∠EBC+∠BEC=90°,EC=m,BC=﹣m2+m+2﹣2=﹣m2+m,
∵∠EBF=90°,
∴∠EBC+∠ABO=90°,
∴∠ABO=∠BEC,
∴Rt△ECB∽Rt△BOA,
∴,
∴,解得m=0(舍去)或m=,
解得,m=,
综上所述,以B、E、F为顶点的三角形与△FPA相似,m的值=,
(4)由(1)知,P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),
∵E、F、P三点为“共谐点”,
∴有F为线段PE的中点、P为线段FE的中点或E为线段PF的中点,
当F为线段PE的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=4(三点重合,舍去)或m=;
当P为线段FE的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=4(舍去)或m=﹣1;
当E为线段FP的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=4(舍去)或m=﹣;
综上可知当E、F、P三点成为“共谐点”时m的值为﹣1或﹣或.
科目:初中数学 来源: 题型:
【题目】如图,AT是⊙O的切线,OD⊥BC于点D,并且AT=10cm,AC=20cm,OD=4cm,则半径OC=( )
A. 8.5cm B. 8cm C. 9.5cm D. 9cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(定义)如图1,A,B为直线l同侧的两点,过点A作直线l的对称点,连接B交直线l于点P,连接AP,则称点P为点A,B关于直线的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(-2,-)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC.
(1)求AC的长;
(2)先将△ABC向右平移2个单位得到△A′B′C′,写出A点的对应点A′的坐标;
(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,写出A点对应点A1的坐标.
(4)求点A到A′所画过痕迹的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A1,A2,A3,…都在y轴上,对应的纵坐标分别为1,2,3,….直线l1,l2,l3,…分别经过点A1,A2,A3,…,且都平行于x轴.以点O为圆心,半径为2的圆与直线l1在第一象限交于点B1,以点O为圆心,半径为3的圆与直线l2在第一象限交于点B2,…,依此规律得到一系列点Bn(n为正整数),则点B1的坐标为_____,点Bn的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线 BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为__________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N分别以点M、N为圆心,以大于MN的长度为半径画弧两弧相交于点P过点P作线段BD,交AC于点D,过点D作DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=∠ABC;③BC=BE;④AE=BE中,一定正确的是( )
A. ①②③B. ① ② ④C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中时间每增加1天,日销售量减少5件.
(1)第17天的日销售量是 件,日销售利润是 元.
(2)求试销售期间日销售利润的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com