精英家教网 > 初中数学 > 题目详情
6.一铅球运动员抛出铅球后,铅球离抛掷点的水平距离y(米)与铅球在空中运动时间x(秒)之间的关系类似于y=-x2+6x+3,则该运动员的铅球成绩是12米.

分析 该运动员的铅球成绩即铅球离抛掷点的水平距离y的最大值,将y=-x2+6x+3配方成y=-(x-9)2+12即可得答案.

解答 解:∵y=-x2+6x+3=-(x-9)2+12,
∴当x=9时,y取得最大值,最大值为12,
即铅球运动第9秒时,铅球离抛掷点的水平距离达到最远距离12米,
故答案为:12米.

点评 本题主要考查二次函数的应用,根据题意知该运动员的铅球成绩即铅球离抛掷点的水平距离y的最大值是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.过等腰△ABC底边BC上一点P引PM∥CA交AB于M;引PN∥BA交AC于N,作点P关于MN的对称点P′.试证:P′点在△ABC外接圆上,且P′B:P′C=BP:PC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC.
(1)求证:BC∥OP;
(2)若半圆O的半径等于2,填空:
①当AP=2时,四边形OAPC是正方形;
②当AP=2$\sqrt{3}$时,四边形BODC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知抛物线y=ax2+c与直线$y=-\frac{3}{4}x-3$交于A,B两点,直线AB与y轴交于点C,点B的坐标为(1,$-\frac{15}{4}$),动点P在直线AB下方的抛物线上,动点Q在y轴上,动点D在线段AB上,且PD∥y轴.
(1)求A、C两点的坐标及抛物线的解析式;
(2)求点P到直线AB的距离的最大值;
(3)是否存在以P、Q、C、D为顶点的四边形为菱形?若存在,请直接写出P、Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一次函数y1=ax+b与一次函数y2=-bx-a在同一平面直角坐标系中的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,PM切⊙O于点P,弦PQ∥OM,若∠OMP=30°,劣弧PQ的弧长为$\frac{π}{3}$,则线段OM的长为(  )
A.1B.2C.3D.π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.一块三角形纸板ABC,∠ACB=90°,AC=3,AB=5,把它置于平面直角坐标系中,AC∥y轴,BC∥x轴,顶点A,B恰好都在反比例函数y=$\frac{k}{x}$的图象上,AC,BC的延长线分别交x轴、y轴于D,E两点,设点C的坐标为(m,n).
(1)求A,B两点的坐标(含m,n,不含k);
(2)当m=n+0.5时,求该反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,正方形ABCD中,点E、F、G、H分别是在边AB、BC、CD、DA上,且EG与FH的夹角为45°,若正方形ABCD的边长是1.FH=$\frac{\sqrt{5}}{2}$,则EG的长度是$\frac{\sqrt{10}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,四边形ABCD是菱形,点O是对角线的交点,三条直线都经过点O,图中阴影面积为24cm2,其中一对对角线长为6cm,则另一条对角线长为16cm.

查看答案和解析>>

同步练习册答案