【题目】将一副三角板按不同位置放置,其中与互补的是( )
A.B.C.D.
【答案】D
【解析】
根据三角板的角度和补角的定义进行判断.
A.根据三角板的角度可得∠1=90°+45°=135°,∠2=30°+45°=75°,∠1+∠2=210°,所以∠1和∠2不互补,A选项不符合题意;
B.由图可知∠1=∠2且大于90°,所以∠1+∠2>180°,所以∠1和∠2不互补,B选项不符合题意;
C.如图,易得∠1=180°-∠3-60°=120°-∠3,∠2=∠4+45°,
∴∠1+∠2=165°+∠4-∠3
又∵∠3+∠5=90°=∠4+∠5
∴∠3=∠4
∴∠1+∠2=165°
∴∠1和∠2不互补,C选项不符合题意;
D.∠1=180°-45°=135°,∠2=45°,∠1+∠2=180°,
∴∠1和∠2互补,D选项符合题意;
故选D.
科目:初中数学 来源: 题型:
【题目】市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量(千克)是销售单价(元)的一次函数,且当=40时,=120;=50时,=100.在销售过程中,每天还要支付其他费用500元.
(1)求出与的函数关系式,并写出自变量的取值范围.
(2)求该公司销售该原料日获利(元)与销售单价(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.
(1)求直线BC的函数解析式;
(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.
①若△PQB的面积为,求点M的坐标;
②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC 中,AB=AC,∠BAC=90,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=∠ABE.
(1)求证:BF=AC;
(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;
(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在中,,于点D,点P在线段DB上,点M是边AC的中点,连结MP,作,点Q在边BC上.若,则( )
A.当时,点P与点D重合
B.当时,
C.当时,
D.当时,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DE⊥AC,垂足为点E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AB=2BF,给出下列结论:①△ABC为等腰三角形;②AD⊥BC;③△CED≌△BFD;④AC=3BF.其中,正确的结论共有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,∠ECF的度数为( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国北京已获得2022年第24届冬季奥林匹克运动会举办权,北京也将创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市.张家口也成为本届冬奥会的协办城市,为此,中国设计了第一条采用我国自主研发的北斗卫星导航系统的智能化高速铁路——京张高铁,作为2022年北京冬奥会重要交通保障设施.已知北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com