精英家教网 > 初中数学 > 题目详情
(2013•黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:
十进位制 0 1 2 3 4 5 6
二进位制 0 1 10 11 100 101 110
请将二进位制数10101010(二)写成十进位制数为
170
170
分析:根据二进制的意义即可化成十进制,从而求解.
解答:解:10101010(二)=27+25+23+2=128+32+8+2=170.
故答案是:170.
点评:本题考查了有理数的运算,理解二进制的意义是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄石)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(
3
取1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图3,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=90°,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石模拟)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为
1或3
1或3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石模拟)4月20日8时2分,四川省雅安市芦山县发生了7.0级地震,当地的部分房屋严重受损,上万灾民无家可归,灾情牵动亿万中国人的心.某市积极筹集救灾物质 260吨物资从该市区运往雅安甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
           车 型
运往地
甲 地(元/辆) 乙 地(元/辆)
大货车 720 800
小货车 500 650
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.

查看答案和解析>>

同步练习册答案