精英家教网 > 初中数学 > 题目详情
12、对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
④若m是方程ax2+bx+c=0的一个根,则一定有b2-4ac=(2am+b)2成立.
其中正确地只有(  )
分析:①根据根的判别式即可作出判断;
②方程ax2+bx+c=0有两个不等的实数根,则△=b2-4ac>0,判断方程cx2+bx+a=0也一定有两个不等的实数根,只要证明方程的判别式的值大于0即可;
③若c是方程ax2+bx+c=0的一个根,则代入即可作出判断;
④若m是方程ax2+bx+c=0的一个根,即方程有实根,判别式△≥0,结合m是方程的根,代入一定成立,即可作出判断.
解答:解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2-4ac>0,所以方程有两个实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则△=b2-4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;
④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,
即am2=-(bm+c),
而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=-4abm-4ac+b2=b2-4ac.
所以①④成立.
故选D.
点评:本题考查了一元二次方程根的判别式的应用,此考点一直是中考中的一个经久不衰的老考点.
练习册系列答案
相关习题

科目:初中数学 来源:三点一测丛书 九年级数学 上 (江苏版课标本) 江苏版课标本 题型:044

有一根为1的一元二次方程

对于关于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

由于a+b+c=0,则c=-a-b

将c=-a-b代入原方程,得ax2+bx-a-b=0.

即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,x1=________,x2=________;

(2)7x2-4x-3=0,x1=________,x2=________;

(3)13x2+7x-20=0,x1=________,x2=________;

(4)x2-(+1)x+=0,x1=________,x2=________;

(5)2004x2-2003x-1=0,x1=________,x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),x1=________,x2=________;

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:022

有一根为1的一元二次方程

  对于关于x的一元一次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

  由于a+b+c=0,则c=-a-b

  将c=-a-b代入原方程,得ax2+bx-a-b=0.

  即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

  解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,       (2)7x2-4x-3=0,

x1=________,x2=________;  x1=________,x2=________;

(3)13x2+7x-20=0,      (4)x2-(+1)x+=0,

x1=________,x2=________;  x1=________,x2=________;

(5)2004x2-2003x2-1=0,x1=________;x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),

x1=________,x2=________.

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

同步练习册答案