精英家教网 > 初中数学 > 题目详情
19.小吃部内一小型餐桌,桌面的长为120cm,宽为80cm,桌布的长为180cm,宽为120cm,将桌布按与桌面长宽相间的方向铺在桌面上,使桌面相对两边桌布下垂的宽度各自相等,求此时桌布四个角下垂的大致尺寸(保留根号)

分析 由勾股定理分别求出桌面和桌布的对角线长,即可得出结果.

解答 解:由勾股定理得:$\sqrt{12{0}^{2}+8{0}^{2}}$=40$\sqrt{13}$,$\sqrt{18{0}^{2}+12{0}^{2}}$=60$\sqrt{13}$,
∴桌布四个角下垂的大致尺寸为$\frac{1}{2}$(60$\sqrt{13}$-40$\sqrt{13}$)=10$\sqrt{13}$(cm);
答:此时桌布四个角下垂的大致尺寸为10$\sqrt{13}$cm.

点评 本题考查了矩形的性质、勾股定理的应用;熟练掌握勾股定理是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知函数y=x+$\frac{1}{x}$(x>0)的图象如图所示,其中当x=1时,函数取得最小值2,请结合图象,解答以下问题:
(1)当x>0时,求y的取值范围;
(2)当2≤x≤5时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.观察下列等式:
1+2+3+4+…+n=$\frac{1}{2}$n(n+1);
1+3+6+10+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+20+…+$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
则有:1+5+15+35+…$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在所给网络图(每小格均为边长是1的正方形)中完成下列各题:
(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1
(2)在DE上画出点P,使PB+PC最小;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二次函数y=ax2+bx+c的图象的顶点(3,4)且与y轴的交点为(0,-5),求这个二次函教的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,矩形ABCD中,AB=4,BC=6,对角线AC,BD交于点O,延长DC到E,连接OE,交BC于点F.若CE=2,试求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知直角三角形ABC中,点D为斜边BC的中点,AC=4,BC=8,直角EDF的两边分别与直线AC,直线AB交于点E和点F,BF=7,则AE的长为7$\sqrt{3}$-4或7$\sqrt{3}$+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在6×6的方格中,点A,O,B都在小方格的顶点上,请在方格中取点C和D,画△AOC和△BOD,使这两个三角形全等.
(1)在图1中画出的两个三角形,可以使其中一个三角形通过轴对称得到另一个三角形.
(2)在图2中画出的两个三角形,可以使其中一个三角形通过旋转得到另一个三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.方程组$\left\{\begin{array}{l}{x+y=1}\\{2x+y=5}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$C.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=4}\\{y=-3}\end{array}\right.$

查看答案和解析>>

同步练习册答案