精英家教网 > 初中数学 > 题目详情

【题目】如图,下列条件中不能判定AB∥CD的是(  )

A. ∠3=∠4 B. ∠1=∠5 C. ∠4+∠5=180° D. ∠3+∠5=180°

【答案】C

【解析】

根据同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;可以进行判定.

A选项,因为∠3和∠4一组内错角,且∠3=∠4,根据内错角相等两直线平行可以判定AB∥CD,不符合题意,

B选项,因为∠1和∠5 是一组同位角,且∠1=∠5根据同位角相等两直线平行可以判定AB∥CD,不符合题意,

C选项,因为∠4和∠5一组邻补角,所以∠4+∠5=180°不能判定两直线平行,

D选项,因为∠3和∠5是一组同旁内角,且∠3+∠5=180°,根据根据同旁内角互补两直线平行可以判定AB∥CD,不符合题意,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某面粉加工厂要加工一批小麦,2台大面粉机和5台小面粉机同时工作2小时共加工小麦1.1万斤;3台大面粉机和2台小面粉机同时工作5小时共加工小麦3.3万斤.

(1)1台大面粉机和1台小面粉机每小时各加工小麦多少万斤?

(2)该厂现有9.45万斤小麦需要加工,计划使用8台大面粉机和10台小面粉机同时工作5小时,能否全部加工完?请你帮忙计算一下.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】百舸竞渡,激情飞扬.为纪念爱国诗人屈原,某市举行龙舟赛.甲、乙两支龙舟队在比赛时,路程(米)与时间(分钟)之间的函数图象如图所示,根据图象回答下列问题:

最先达到终点的是________队,比另一对早________分钟到达;

在比赛过程中,乙队在第________分钟和第________分钟时两次加速;

求在什么时间范围内,甲队领先?

相遇前,甲乙两队之间的距离不超过的时间范围是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=x的图象相交于点(2,a),求:

(1)a的值.

(2)k,b的值.

(3)这两个函数图象与x轴所围成的三角形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究与应用:

(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)

(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).

(3)比较甲乙两图阴影部分的面积,可以得到公式 (用式子表达)

(4)运用你所得到的公式计算:10.3×9.7.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于的方程有增根,则的值为__________

【答案】2

【解析】方程两边都乘(x2),得

x+x2=a,即a=2x2.

分式方程的增根是x=2,

∵原方程增根为x=2,

∴把x=2代入整式方程,得a=2,

故答案为:2.

点睛:本题考查了分式方程的增根,增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.

型】填空
束】
17

【题目】反比例函数y=的图象经过点(16)和(m-3),则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).

(1)求反比例函数与一次函数的表达式;

(2)结合图像写出不等式的解集;

(3)点E为y轴上一个动点,若SAEB=10,求点E的坐标.

【答案】(1)y=,y=-x+7(2)0<x<2或x>12(3)点E的坐标为(0,5)或(0,9)

【解析】试题分析:(1)把点A的坐标代入反比例函数解析式求出反比例函数的解析式把点B的坐标代入已求出的反比例函数解析式得出n的值,得出点B的坐标,再把AB的坐标代入直线求出kb的值,从而得出一次函数的解析式

(2)设点E的坐标为(0,m),连接AEBE先求出点P的坐标(0,7),得出PE=|m﹣7|,根据SAEB=SBEPSAEP=10,求出m的值从而得出点E的坐标.

解:(1)把点A(2,6)代入y=,得m=12,则y=

把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).

由直线y=kx+b过点A(2,6),点B(12,1),

则所求一次函数的表达式为y=﹣x+7.

(2)

(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.

∵SAEB=SBEP﹣SAEP=10,∴×|m﹣7|×(12﹣2)=10.

∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).

型】解答
束】
26

【题目】太仓市为了加快经济发展,决定修筑一条沿江高速铁路,为了使工程提前半年完成,需要将工作效率提高25%。原计划完成这项工程需要多少个月?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两个保持不动,且的一边,另一边DE与直线OB相交于点F.

,解答下列问题:

如图,当点E、O、D在同一条直线上,即点O与点F重合,则______;

当点E、O、D不在同一条直线上,画出图形并求的度数;

的前提下,若,且,请直接写出的度数用含的式子表示

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长是2,D,E分别为ABAC的中点,延长BC至点F,使CFBC连接CD和EF.

(1)求证:DE=CF;

(2)求EF的长.

查看答案和解析>>

同步练习册答案