精英家教网 > 初中数学 > 题目详情

如图,已知抛物线数学公式与抛物线数学公式关于y轴对称,并与y轴交于点M,与x轴交于A、B两点.

(1)求抛物线y1的解析式;
(2)若AB的中点为C,求sin∠CMB;
(3)若一次函数y=kx+h的图象过点M,且与抛物线y1交于另一点N(m,n),其中m≠n,同时满足m2-m+t=0和n2-n+t=0(t为常数).
①求k值;
②设该直线交x轴于点D,P为坐标平面内一点,若以O、D、P、M为顶点的四边形是平行四边形,试求P点的坐标.(只需直接写出点P的坐标,不要求解答过程)

解:(1)对于函数来说,令x=0,则y=5,
∴M(0,5),
令y=0,则x2+6x+5=0,
∴x1=-1,x2=-5,
∴抛物线y2与x轴两交点的坐标为(-1,0),(-5,0),
∵抛物线y1、y2关于y轴对称,
∴A(1,0),B(5,0).…
故可设y1=a(x-1)(x-5),将点M(0,5)代入,得y1=(x-1)(x-5),即.…
(2)∵A(1,0),B(5,0),M(0,5),C为AB的中点,
∴C(3,0),CB=2,MC=
∴S△CMB=CB•OM=×2×5=5,
∵OM=OB=5,
∴由勾股定理可得MB=5
过点C作CH⊥MB于点H,则×5-CH=5,

∴CH=
在Rt△MCH中,sin∠CMB===
(3)①∵直线y=kx+h过点M(0,5),
∴h=5,
∵N(m,n)在抛物线y1上,
∴n=m2-6m+5,
又∵m2-m+t=0,n2-n+t=0,
故两式相减,得:m2-n2-m+n=0,即(m-n)(m+n-1)=0.
∵m≠n,
∴m+n-1=0,即n=1-m,
将n=1-m代入n=m2-6m+5得:m2-5m+4=0,
∴m1=1,m2=4.从而n1=0,n2=-3,
∴N1(1,0),N2(4,-3),
故将它们的坐标分别代入y=kx+5中,得k1=-5,k2=-2.
②当k=-5时,直线为y=-5x+5,此时D,N与A点重合.
因此满足条件的P点有三个:P1(1,5),P2(-1,5),P3(1,-5).
当k=-2时,直线为y=-2x+5,此时D(,0).
因此满足条件的P点也有三个:P4,5),P5(-,5),P6(,-5).
综上,满足条件的P点共有六个:P1(1,5),P2(-1,5),P3(1,-5),P4,5),P5(-,5),P6,-5).
分析:(1)对与函数,令x=0,可得y=5,从而可得出点M的坐标,令y=0,可求出x1=-1,x2=-5,从而得出抛物线y2与x轴两交点的坐标为(-1,0),(-5,0),结合轴对称的知识,可设y1=a(x-1)(x-5),将点M(0,5)代入,即可得出解析式;
(2)过点C作CH⊥MB于点H,求出CB、MC,及△CMB的面积,然后利用勾股定理求出MB的长度,继而可得出CH的长度,在RT△MNH中可求出sin∠CMB的值;
(3)先根据题意得出直线y=kx+h中k的可能值,然后分类讨论得出点D的坐标,根据平行四边形的性质即可得出点P的坐标.
点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法等知识点,主要考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在斜坡A处立一旗杆AB(旗杆与水平面垂直),一小球从斜坡O点抛出(如图),小球擦旗杆顶B而过,落地时撞击斜坡的落点为C,已知A点与O点的距离为
5
2
米,旗杆AB高为3米,C点的垂精英家教网直高度为3.5米,C点与O点的水平距离为7米,以O为坐标原点,水平方向与竖直方向分别为x轴、y轴,建立直角坐标系.
(1)求小球经过的抛物线的解析式(小球的直径忽略不计);
(2)H为小球所能达到的最高点,求OH与水平线Ox之间夹角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在斜坡A处立一旗杆AB(旗杆与水平面垂直),一小球从斜坡O点抛出(如图),小球擦旗杆顶B而过,落地时撞击斜坡的落点为C,已知A点与O点的距离为数学公式米,旗杆AB高为3米,C点的垂直高度为3.5米,C点与O点的水平距离为7米,以O为坐标原点,水平方向与竖直方向分别为x轴、y轴,建立直角坐标系.
(1)求小球经过的抛物线的解析式(小球的直径忽略不计);
(2)H为小球所能达到的最高点,求OH与水平线Ox之间夹角的正切值.

查看答案和解析>>

科目:初中数学 来源:河南省期中题 题型:解答题

已知,如图,在平面直角坐标系中,抛物线的解析式为,将抛物线平移后得到抛线物,若抛物线经过点(0,2),且其顶点A的横坐标为最小正整数。
(1 )求抛物线l2 的解析式;
(2 )说明将抛物线l1 如何平移得到抛物线l2
(3 )若将抛物线l2 沿其对称轴继续上下平移,得到抛物线l3 ,设抛物线l3 的顶点为B ,直线OB 与抛物线l3 的另一个交点为C .当OB=OC 时,求点C 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知m、n是方程的两个实数根,且m<n,抛物线的图像经过点A(m,0)、B(0,n).  

(1)求这个抛物线的解析式;

(2)设(1)中抛物线与x轴的另一交点为C,抛物线的

顶点为D,试求出点C、D的坐标和△BCD的面积;

(注:抛物线的顶点坐标为

(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛

物线交于H点,若直线BC把△PCH分成面积之比

为2:3的两部分,请求出P点的坐标.              

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2001•青海)在斜坡A处立一旗杆AB(旗杆与水平面垂直),一小球从斜坡O点抛出(如图),小球擦旗杆顶B而过,落地时撞击斜坡的落点为C,已知A点与O点的距离为米,旗杆AB高为3米,C点的垂直高度为3.5米,C点与O点的水平距离为7米,以O为坐标原点,水平方向与竖直方向分别为x轴、y轴,建立直角坐标系.
(1)求小球经过的抛物线的解析式(小球的直径忽略不计);
(2)H为小球所能达到的最高点,求OH与水平线Ox之间夹角的正切值.

查看答案和解析>>

同步练习册答案