精英家教网 > 初中数学 > 题目详情
请阅读下列材料:
问题:如图1,在正方形ABCD和正方形CEFG中,点B、C、E在同一条直线上,M是线段AF的中点,连接DM,MG.探究线段DM与MG数量与位置有何关系.

小聪同学的思路是:延长DM交GF于H,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)直接写出上面问题中线段DM与MG数量与位置有何关系______;
(2)将图1中的正方形CEFG绕点C顺时针旋转,使正方形CEFG对角线CF恰好与正方形ABCD的边BC在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
(3)如图3,将正方形CEFG绕点C顺时针旋转任意角度,原问题中的其他条件不变,写出你的猜想.
(1)如图1,在正方形ABCD和正方形CEFG中,ADBCGF,
∴∠DAM=∠HFM,
∵M是线段AF的中点,
∴AM=FM,
在△ADM和△FHM中,
∠DAM=∠HFM
AM=FM
∠AMD=∠FMH

∴△ADM≌△FHM(ASA),
∴DM=HM,AD=FH,
∵GD=CG-CD,GH=GF-FH,AD=CD,CG=GF,
∴GD=GH,
∴△DGH是等腰直角三角形,
∴DM=MG且DM⊥MG;

(2)如图2,延长DM交CF于H,连接GD,GH,
同(1)可得DM=HM,AD=FH,
∵CF恰好与正方形ABCD的边BC在同一条直线上,
∴∠DCG=90°-45°=45°,
∠HFG=45°,
∴∠DCG=∠HFG,
在△CDG和△FHG中,
CD=FH
∠DCG=∠HFG
CG=FG

∴△CDG≌△FHG(SAS),
∴GD=GH,∠CGD=∠FGH,
∴∠DGH=∠CGD+∠CGH=∠FGH+∠CGH=∠CGF=90°,
∴△DGH是等腰直角三角形,
∴DM=MG且DM⊥MG;

(3)如图3,过点F作FHAD交DM的延长线于H,交DC的延长线于N,
同(1)可得DM=HM,AD=FH,
易得∠NCE=∠EFN,
∵∠DCG+∠NCE=180°-90°=90°,
∠HFG+∠EFN=90°,
∴∠DCG=∠HFG,
在△CDG和△FHG中,
CD=FH
∠DCG=∠HFG
CG=FG

∴△CDG≌△FHG(SAS),
∴GD=GH,∠CGD=∠FGH,
∴∠DGH=∠CGD+∠CGH=∠FGH+∠CGH=∠CGF=90°,
∴△DGH是等腰直角三角形,
∴DM=MG且DM⊥MG.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=8,AC=6,AD为BC边上的中线,将△ADC绕点D旋转180°,得到△EDB,则中线AD长的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠C=90°,∠A=30°,AB=2.
(1)用尺规作图,作出△ABC绕点A逆时针旋转60°后得到的△AB1C1(不写画法,保留画图痕迹);结论:______为所求.
(2)在(1)的条件下,连接B1C,求B1C的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.
(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为
4
3
3
cm2
,求旋转的角度n.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点按逆时针方向旋转30°得到点P1,延长OP1,到点P2,使OP2=2OP1;再将点P2绕着原点按逆时针方向旋转30°得到点P3,延长OP3,到P4,使OP4=2OP3;如此继续下去,求:
(1)点P2的坐标;
(2)点P2010的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将边长为
3
的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为______平方单位.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:
如图(一),在已建立直角坐标系的方格纸中,图形①的顶点为A、B、C,要将它变换到图④(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界).
例如:将图形①作如下变换(如图二).
第一步:平移,使点C(6,6)移至点(4,3),得图②;
第二步:旋转,绕着点(4,3)旋转180°,得图③;
第三步:平移,使点(4,3)移至点O(0,0),得图④.
则图形①被变换到了图④.

解决问题:
(1)在上述变化过程中A点的坐标依次为:
(4,6)→(______,______)→(______,______)→(______,______)
(2)如图(三),仿照例题格式,在直角坐标系的方格纸中将△DEF经过平移、旋转、翻折等变换得到△OPQ.(写出变换步骤,并画出相应的图形)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在所给网格图(每小格均为边长△ABC是1的正方形)中完成下列各题:
(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1
(2)画出格点△ABC(顶点均在格点上)绕点A顺时针旋转90度的△A2B2C2
(3)在DE上画出点M,使MA+MC最小.

查看答案和解析>>

同步练习册答案