精英家教网 > 初中数学 > 题目详情
9.如图,以点O为圆心的半圆经过点C,AB为直径,若AC=BC=$\sqrt{2}$,则图中阴影部分的面积是$\frac{π}{4}$.

分析 先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.

解答 解:∵AB为直径,
∴∠ACB=90°,
∵AC=BC=$\sqrt{2}$,
∴△ACB为等腰直角三角形,
∴OC⊥AB,
∴△AOC和△BOC都是等腰直角三角形,
∴S△AOC=S△BOC,OA=$\frac{\sqrt{2}}{2}$AC=1,
∴S阴影部分=S扇形AOC=$\frac{90•π×{1}^{2}}{360}$=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法; ②和差法; ③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.化简$\frac{m-1}{m}$÷$\frac{1-m}{{m}^{2}}$是-m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,BD是∠ABC的平分线,EF垂直平分BD.
求证:∠ABD=∠BDF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:($\sqrt{2}$-3)0-$\sqrt{9}$+(-1)2014+|-2|+(-$\frac{1}{3}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=$\frac{3}{20}$x2-3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.
(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.
①点B的坐标为(10、0),BK的长是8,CK的长是10;
②求点F的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级、B级、C级、D级),并就爱那个测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:

(1)本次抽样测试的学生人数是400;
(2)扇形图中∠α的度数是108°,并把条形统计图补充完整;
(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),比如:等级为A的同学体育得分为90分,…,依此类推.该市九年级共有学生32000名,如果全部参加这次体育测试,估计该市九年级不及格(即60分以下)学生的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕着点C按顺时针方向旋转60°得到△ADC,连结OD,当α=150°时,△AOD是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知,甲地到乙地的路程为260千米,一辆大货车从甲地前往乙地运送物资,行驶2小时在途中某地出现故障,立即通知技术人员乘小汽车从甲地赶来维修(通知时间忽略不计),小汽车到达该地后经过20分钟修好大货车后以原速原路返回甲地,同时大货车以原来1.5倍的速度前往乙地,如图是两车距甲地的路程y(千米)与大货车所用时间x(小时)之间的函数图象,则大货车到达乙地比小汽车返回甲地晚2$\frac{1}{6}$小时.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).
(1)画出△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1的坐标;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,不画图直接写出顶点B2,C2的坐标;
(3)画出△ABC绕着点O按顺时针方向旋转90°得到的△A3B3C3,写出△A3B3C3的顶点A3的坐标.

查看答案和解析>>

同步练习册答案