精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,∠BAD=80°AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()

A.50°B.60°C.70°D.80°

【答案】B

【解析】

如图,连接BF

在菱形ABCD中,∵∠BAD=80°

∴∠BAC=∠BAD=×80°=40°∠BCF=∠DCFBC=CD

∠ABC=180°﹣∠BAD=180°﹣80°=100°

∵EF是线段AB的垂直平分线,∴AF=BF∠ABF=∠BAC=40°

∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°

△BCF△DCF中,BC=CD∠BCF=∠DCFCF=CF∴△BCF≌△DCFSAS).

∴∠CDF=∠CBF=60°.故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将三角形ABC向左平移至点B与原点重合,得三角形AOC

1)直接写出三角形ABC的三个顶点的坐标A  B  C  

2)画出三角形AOC

3)求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DEBC,下面是王华同学的推导过程﹐请你帮他在括号内填上推导依据或内容.

证明:

∵∠1+∠2﹦180(已知),

∠1﹦∠4 _________________

∴∠2﹢_____﹦180°.

EHAB___________________________________

∴∠B﹦∠EHC________________________________

∵∠3﹦∠B(已知)

∴ ∠3﹦∠EHC____________________

DEBC__________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是过圆外一点作圆的切线的尺规作图过程.

请回答以下问题:

1连接OAOB,可证∠OAP =OBP = 90°,理由是______________________

2)直线PAPB是⊙O的切线,依据是__________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我国古代数学著作《九章算术》中记载了这样一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现代语言表述为:如图,AB为⊙O的直径,弦CDAB于点EAE = 1寸,CD = 10寸,求直径AB的长.请你解答这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为A0a),Bba),且ab满足(a32+|b6|0,现同时将点AB分别向下平移3个单位,再向左平移2个单位,分别得到点AB的对应点CD,连接ACBDAB

1)求点CD的坐标及四边形ABDC的面积S四边形ABCD

2)在y轴上是否存在一点M,连接MCMD,使SMCDS四边形ABCD?若存在这样一点,求出点M的坐标,若不存在,试说明理由;

3)点P是直线BD上的一个动点,连接PAPO,当点PBD上移动时(不与BD重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发,沿射线AG1cm/s的速度运动,同时点F从点B出发,沿射线BC2cm/s的速度运动,设运动时间为t,当t( )s时,以AFCE为顶点的四边形是平行四边形?( )

A.2B.3C.6D.26

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数与反比例函数交于点

(1)分别求出反比例函数和一次函数的表达式;

(2)根据函数图象,直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究: 如图,直线的表达式为,与轴交于点,直线轴于点交于点,过点轴于点

1)求点的坐标;

2)求直线的表达式;

3)求的值;

4)在轴上是否存在点,使得?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案