精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,∠DAE的度数为
10°
10°
分析:先根据三角形内角和定理求出∠BAC的度数,由角平分线的定义求出∠CAE的度数,再根据直角三角形的性质求出∠CAD的度数,进而可得出结论.
解答:解:∵△ABC中,∠B=40°,∠C=60°,
∴∠BAC=180°-∠B-∠C=180°-40°-60°=80°,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=
1
2
×80°=40°,
∵AD⊥BC,
∴∠CAD=90°-∠C=90°-60°=30°,
∴∠DAE=∠CAE-∠CAD=40°-30°=10°.
故答案为:10°.
点评:本题考查的是三角形内角和定理及角平分线的性质,熟知三角形的内角和是180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案