精英家教网 > 初中数学 > 题目详情

【题目】如图,为加快5G网络建设,某通信公司在一个坡度i12.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是(  )(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75

A.22.5B.27.5C.32.5D.45.0

【答案】B

【解析】

过点FFHDC于点H,延长DCEA于点G,可得四边形EFHG是矩形,根据AB的坡度i12.4AC13,可得CG5AG12CHGHCG1055,再根据锐角三角函数即可求出信号塔CD的高度.

解:如图,过点FFHDC于点H

延长DCEA于点G

则四边形EFHG是矩形,

FHGECGEF

AB的坡度i12.4AC13

CG5AG12

CHGHCG1055

GEAG+AE12+1830

∴在RtDCF中,∠DFC37°,FHGE30

DHFHtan37°≈30×0.7522.5

CDDH+CH22.5+527.5(米).

所以信号塔CD的高度约是27.5米.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BDAE于点F,延长AE至点C,使得FC=BC,连接BC

(1)求证:BC是⊙O的切线;

(2)O的半径为5,tanA=,求FD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△DEF由△ABC平移得到,∠DFE=CDF=30°,∠DEF=90°BEDF于点B.连接CEAB=3

1)求证:四边形ACDF为矩形

2)求线段CE的长和△CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.点从点出发,沿方向以每秒个单位长度的速度向终点运动(点不与重合),过点交折线于点为边问下作正方形落在边上设点运动的时间为(秒).

1)直接用含的代数式表示线段的长.

2)当点落在边上时,求的值.

3)当正方形重叠部分图形为四边形时,设四边形的面积为(平方单位),求之间的函数关系式.

4)点为边的中点,直接写出直线将正方形分成的两部分图形的面积比为的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(/千克)的函数关系如下图所示:

(1)yx的函数解析式(也称关系式)

(2)求这一天销售西瓜获得的利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB2∠ABC45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,对角线ACBD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EFCD于点G

1)若AB4BE,求△CEF的面积.

2)如图2,线段FE的延长线交AB于点H,过点FFMCD于点M,求证:BH+MGBE

3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点FFM垂直直线CD于点M,请直接写出线段BHMGBE的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形以点为圆心,以任意长为半径作弧分别交两点,再分别以点为圆心,以大于的长为半径作弧交于点,作射线于点,若,则矩形的面积等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.

(1)求斜坡CD的高度DE;

(2)求大楼AB的高度(结果保留根号)

查看答案和解析>>

同步练习册答案