【题目】如图1,平面直角坐标系中,点O为坐标原点,抛物线交x轴于A、B两点在B的左边,交y轴于C,直线经过B、C两点.
求抛物线的解析式;
为直线BC下方的抛物线上一点,轴交BC于D点,过D作于E点设,求m的最大值及此时P点坐标;
探究是否存在第一象限的抛物线上一点M,以及y轴正半轴上一点N,使得,且若存在,求出M、N两点坐标;否则,说明理由.
【答案】; m的最大值为,此时点P的坐标为;存在满足条件的M、N两点,坐标分别为、
【解析】
利用直线经过B、C两点,先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;
根据表达式,设出D点坐标,用含a的代数式分别表达出线段PD、DE,转化成m关于a的二次函数,再求m的最大值及P点坐标;
根据条件,且,利用三角形的全等去确定满足条件的M、N点,再根据函数解析式去它们的坐标.
直线经过坐标轴上B、C两点,
,
而B、C两点在抛物线上,于是有
解得,
故抛物线的解析式为.
连接AD,并延长PD交x轴于H点如图,设H点坐标为,则D点坐标为,P点坐标为,所以,
由,当时,解得或4,于是可知,且
,
由于
于是有
即:
得
即:当时,m的最大值为
此时可代入得
故m的最大值为,此时点P的坐标为
过N点分别作交CA延长线于E点,作于F点,如图2
,
而在四边形NECF中,,,,
又,且
≌,
平分
若设CM与X轴交点为G点,根据轴对称,可知G点坐标为
由、两点可得:
而点M是直线CM与抛物线的交点,于是有
解得,或,
由此可知点M的坐标为
设N点坐标为,根据
解得,所以N点坐标为
故存在满足条件的M、N两点,坐标分别为、
科目:初中数学 来源: 题型:
【题目】《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从 2018 年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的 统计图,已知“查资料”的人数是 40人.请你根据以上信息解答下列问题:
(1)在扇形统计图中,“玩游戏”对应的百分比为______,圆心角度数是______度;
(2)补全条形统计图;
(3)该校共有学生2100人,估计每周使用手机时间在2 小时以上(不含2小时)的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB 是⊙O 的弦,半径OE⊥ AB ,P 为 AB 的延长线上一点,PC 与⊙O相切于点 C,连结 CE,交 AB 于点 F,连结 OC.
(1)求证:PC=PF.
(2)连接 BE,若∠CEB=30°,半径为 8,tan P ,求 FB 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:ABCP=BDCD;
(3)当AB=5cm,AC=12cm时,求线段PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°到AB位置,且左边细管位置不变,则此时“U”形装置左边细管内水柱的高度约为( )
A. 4cmB. 2cmC. 3cmD. 8cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若|m+3|+=0,点P(m,n)关于x轴的对称点P′为二次函数图象顶点,则二次函数的解析式为( )
A. y=(x﹣3)2+2B. y=(x+3)2﹣2
C. y=(x﹣3)2﹣2D. y=(x+3)2+2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com