精英家教网 > 初中数学 > 题目详情
已知集合B中的数与集合A中对应的数之间的关系是某个一次函数,若用y表示集合B中的数,用x表示集合A中的数,求y与x之间的函数关系式,并在集合B中写出与集合A中-2,-1,2,3对应的数值.
设满足条件的一次函数解析式为y=kx+b(k≠0),
由已知得:
-9=-3k+b
-3=0×k+b

解得:
k=2
b=-3

故可得y与x之间的函数关系式为:y=2x-3;
当集合A中的x为-2,-1,2,3时,集合B中对应的数值分别使-7,-5,1,3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象可以看作是由直线y=2x向上平移6个单位长度得到的,且y=kx+b与两坐标轴围成的三角形面积被一正比例函数分成面积的比为1:2的两部分,求这个正比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-
3
3
x+
3
与两坐标轴交于A、B,以点M(1,0)为圆心,MO为半径作小⊙M,又以点M为圆心、MA为半径作大⊙M交坐标轴于C、D.
(1)求证:直线AB是小⊙M的切线.
(2)连接BM,若小⊙M以2单位/秒的速度沿x轴向右平移,大⊙M以1单位/秒的速度沿射线BM方向平移,问:经过多少秒后,两圆相切?
(3)如图2,作直线BEx轴交大⊙M于E,过点B作直线PQ,连接PE、PM,使∠EPB=120°,请你探究线段PB、PE、PM三者之间的数量关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,若直线PA的解析式为y=
2
3
x+b,且点P(4,2),PA=PB,则点B的坐标是(  )
A.(5,0)B.(6,0)C.(7,0)D.(8,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线l的解析式为y=
4
3
x+4
,它与x轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点C、D同时出发,当点C到达点A时同时停止运动.伴随着C、D的运动,EF始终保持垂直平分CD,垂足为E,且EF交折线AB-BO-AO于点F.
(1)直接写出A、B两点的坐标;
(2)设点C、D的运动时间是t秒(t>0).
①用含t的代数式分别表示线段AD和AC的长度;
②在点F运动的过程中,四边形BDEF能否成为直角梯形?若能,求t的值;若不能,请说明理由.(可利用备用图解题)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P是x轴上的一点,以P为圆心的圆交x轴于点A(6,0),且与y轴相切于点O,点C(8,0)为x轴上的一点,过点C作⊙P的切线,切点为B.求过B、C两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为(  )
A.3B.
5
3
3
C.4D.
5
3
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线l的解析式y=
3
4
x
+8,与x轴、y轴分别交于A、B两点,P是x轴上一点,以P为圆心的圆与直线l相切于B点.
(1)求点P的坐标及⊙P的半径R;
(2)若⊙P以每秒
10
3
个单位沿x轴向左运动,同时⊙P的半径以每秒
3
2
个单位变小,设⊙P的运动时间是t秒,且⊙P始终与直线l有交点,试求t的取值范围;
(3)在(2)中,设⊙P被直线l截得的弦长为a,问是否存在t的值,使a最大?若存在,求出t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x(时)之间的函数关系式是______,自变量x必须满足______.

查看答案和解析>>

同步练习册答案