【题目】某木板加工厂将购进的A型、B型两种木板加工成C型,D型两种木板出售,已知一块A型木板的进价比一块B型木板的进价少10元,且购买3块A型木板和2块B型木板共花费120元.
(1)A型木板与B型木板的进价各是多少元?
(2)根据市场需求,该木板加工厂决定用不超过2770元购进A型木板、B型木板共100块,若一块A型木板可制成1块C型木板、2块D型木板;一块B型木板可制成2块C型木板、1块D型木板,且生产出来的C型木板数量不少于D型木板的数量的7/5.
①该木板加工厂有几种进货方案?
②若C型木板每块售价30元,D型木板每块售价25元,且生产出来的C型木板、D型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?
【答案】(1)A型木板的进价为20元,B型木板的进价为30元;(2)①该木板加工厂共有3种进货方案,方案1:购进23块A型木板,77块B型木板;方案2:购进24块A型木板76块B型木板;方案3:购进25块A型木板,75块B型木板.②方案3购进25块A型木板,75块B型木板获得的利润最大,最大利润为5625元.
【解析】
(1)设A型木板的进价为x元,B型木板的进价为y元,根据“一块A型木板的进价比一块B型木板的进价少10元,购买3块A型木板和2块B型木板共花费120元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)①设购进m块A型木板,则购进(100﹣m)块B型木板,根据购进100块木板的总费用不超过2770元且生产出来的C型木板数量不少于D型木板的数量的,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各进货方案;
②根据利润=销售收入﹣成本,即可分别求出三个方案获得的利润,比较后即可得出结论.
(1)设A型木板的进价为x元,B型木板的进价为y元,
依题意,得:,
解得:.
答:A型木板的进价为20元,B型木板的进价为30元.
(2)①设购进m块A型木板,则购进(100﹣m)块B型木板,
依题意,得:,
解得:23≤m≤25.
∵m为整数,
∴m=23,24,25,
∴该木板加工厂共有3种进货方案,方案1:购进23块A型木板,77块B型木板;方案2:购进24块A型木板,76块B型木板;方案3:购进25块A型木板,75块B型木板;
②方案1获得的利润为30×(23+2×77)+25×(2×23+77)﹣20×23﹣30×77=5615(元),
方案2获得的利润为30×(24+2×76)+25×(2×24+76)﹣20×24﹣30×76=5620(元),
方案3获得的利润为30×(25+2×75)+25×(2×25+75)﹣20×25﹣30×75=5625(元),
∵5615<5620<5625,
∴方案3购进25块A型木板,75块B型木板获得的利润最大,最大利润为5625元.
科目:初中数学 来源: 题型:
【题目】用一样长的小木棒按下图中的方式搭图形.
(1)按图示规律填空:
图形标号 | ① | ② | ③ | … |
小木棒的根数 | 9 | … |
(2)按照这种规律搭下去,搭第个图形需要________根小木棒;
(3)请求出搭第100个图形需要的小木棒的根数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有筐白菜,以每筐千克为标准,超过或不足的分别用正、负来表示,记录如下:
与标准质量的差单位:千克 | ||||||
筐 数 |
(1)与标准质量比较,筐白菜总计超过或不足多少千克?
(2)若白菜每千克售价元,则出售这筐白菜可卖多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:
请根据图表中所给的信息,解答下列问题:
(1)在这次调查中共随机抽取了 名学生,图表中的m= ,n= ;
(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;
(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生. 李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,点A在第一象限,AB⊥x轴于B.AC⊥y轴于C,A(4a,3a),且四边形ABOC的面积为48.
(1)如图1,直接写出点A的坐标;
(2)如图2,点D从O出发以每秒1个单位的速度沿y轴正半轴运动,同时点E从A出发,以每秒2个单位的速度沿射线BA运动,DE交线段AC于F,设运动的时间为t,当S△AEF<S△CDF时,求t的取值范围;
(3)如图3,将线段BC平移,使点B的对应点M恰好落在y轴负半轴上,点C的对应点为N,连BN交y轴轴于P,当OM=3OP时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的个数有( )个。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=(x>0)的图象于点B、C.
(1)若点M的坐标为(1,3).
①求B、C两点的坐标;
②求直线BC的解析式;
(2)求△BMC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:
(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1, 并写出点C1的坐标;
②作出△ABC关于原点O对称的△A2B2C2, 并写出点C2的坐标;
(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com