精英家教网 > 初中数学 > 题目详情
4.△ABC 中,∠C=90°,点O为AB上一点,以O为圆心的半圆切AC于E,交AB于D,AC=12,BC=9,求AD的长.

分析 连接OE,根据勾股定理得到AB=15,根据切线的性质得到OE⊥AC,根据平行线分线段成比例定理即可得到结论.

解答 解:连接OE,
∵∠C=90°,AC=12,BC=9,
∴AB=15,
∵AC是⊙O的切线,
∴OE⊥AC,
∵∠C=90°,
∴OE∥BC,
∴$\frac{AO}{AB}=\frac{OE}{BC}$,
∵OE=OD=OB,
∴$\frac{15-OE}{15}$=$\frac{OE}{9}$,
∴OE=$\frac{45}{8}$,
∴AD=15-2×$\frac{45}{8}$=$\frac{15}{4}$.

点评 本题考查了切线的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.解下列方程:
(1)-5x+6+7x=1+2x-3+8x      
(2)-(x-3)=3(2-5x)
(3)$\frac{3x-4}{5}$=$\frac{2-3x}{4}$
(4)$\frac{3x}{0.5}$-$\frac{1.4-x}{0.4}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知二次函数y=-x2+bx+c的图象过点A(3,0),B(0,3)
(1)求此二次函数的解析式;
(2)已知点P在这个抛物线上,且S△ACP=10,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知a、b、c都是有理数,且满足$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$=1,则$\frac{abc}{|abc|}$=(  )
A.1B.-1C.±1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b-1)2=0.点A与点B之间的距离表示为AB(以下类同).
(1)求AB的长;
(2)点C在数轴上对应的数为x,且x是方程2x-2=0.5x+2的解,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由;
(3)在(1)、(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和C分别以每秒4单位长度和9个单位长度的速度向右运动,经过t秒后,请问:AB-BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其常数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,所示的正方形网格中,△ABC的顶点均在格点上,在所给平面直角坐标系中解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1
(2)作出将△ABC绕原点O按逆时针方向旋转90°后所得的△A2B2C2
(3)写出点B1、B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)用代入法解方程组:$\left\{\begin{array}{l}2x+y=4\\ x-y=5\end{array}\right.$
(2)用加减法解方程组:①$\left\{\begin{array}{l}7x-2y=3\\ 9x+2y=-19\end{array}\right.$②$\left\{\begin{array}{l}2x-y=3\\ 5x-2y=8\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,均匀的正四面体的各面依次标有1、2、3、4四个数字.小明做了60次投掷试验,结果统计如下:
朝下数字1234
出现的次数16201410
(1)计算上述试验中“4朝下”的频率是$\frac{1}{6}$;
(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是$\frac{1}{3}$”的说法正确吗?
(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.

查看答案和解析>>

同步练习册答案