精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,RtABC的直角边AC在x轴上,ACB=90°,AC=1,反比例函数(k0)的图象经过BC边的中点D(3,1)

(1)求这个反比例函数的表达式;

(2)若ABC与EFG成中心对称,且EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.

求OF的长;

连接AF,BE,证明四边形ABEF是正方形.

【答案】(1);(2)1;证明见解析

【解析】

试题分析:(1)由D点坐标可求得k的值,可求得反比例函数的表达式;

(2)由中心对称的性质可知ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;由条件可证得AOF≌△FGE,则可证得AF=EF=AB,且EFA=FAB=90°,则可证得四边形ABEF为正方形.

试题解析:

(1)反比例函数(k0)的图象经过点D(3,1),k=3×1=3,反比例函数表达式为

(2)①∵D为BC的中点,BC=2,∵△ABC与EFG成中心对称,∴△ABC≌△EFG,GF=BC=2,GE=AC=1,点E在反比例函数的图象上,E(1,3),即OG=3,OF=OG﹣GF=1;

如图,连接AF、BE,AC=1,OC=3,OA=GF=2,在AOF和FGE中AO=FG,AOF=FGE,OF=GE,∴△AOF≌△FGE(SAS),∴∠GFE=FAO=ABC,∴∠GFE+AFO=FAO+BAC=90°,EFAB,且EF=AB,四边形ABEF为平行四边形,AF=EF,四边形ABEF为菱形,AFEF,四边形ABEF为正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】利用平方根去根号可以构造一个整系数方程.例如:x= +1时,移项得x﹣1= ,两边平方得(x﹣1)2=( 2 , 所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x= 时,可以构造出一个整系数方程是(
A.4x2+4x+5=0
B.4x2+4x﹣5=0
C.x2+x+1=0
D.x2+x﹣1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.

(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而(填“增大”或“减小”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(1,5)在函数x>0)的图象上,过点P分别作x轴、y轴的垂线,垂足为点ABQmn为图象上另一动点,过点Q分别作x轴、y轴的垂线,垂足为点CD.随着m的增大,四边形OCQD四边形OAPB不重叠部分的面积

A. 先增大后减小 B. 先减小后增大

C. 先减小后增大再减小 D. 先增大后减小再增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用火柴棒按以下方式搭小鱼,是课本上多次出现的数学活动.

(1)搭4条小鱼需要火柴棒_________根;

(2)搭n条小鱼需要火柴棒_____________根;

(3)若搭n朵某种小花需要火柴棒(3n+44)根,现有一堆火柴棒,可以全部用上搭出m条小鱼,也可以全部用上搭出m朵小花,求m的值及这堆火柴棒的数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.
(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;
(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图像和一次函数y2=ax+b的图像交于A(3,4)、B(—6,n)。

(1)求两个函数的解析式

(2)观察图像,写出当x为何值时y1>y2

(3)C、D分别是反比例函数第一、三象限的两个分支上的点,且以A、B、C、D为顶点的四边形是平行四边形请直接写出C、D两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等腰三角形ABO的底边OA在x轴上,顶点B在反比例函数y= (x>0)的图象上,当底边OA上的点A在x轴的正半轴上自左向右移动时,顶点B也随之在反比例函数y= (x>0)的图象上滑动,但点O始终位于原点.

(1)如图①,若点A的坐标为(6,0),求点B的坐标;
(2)当点A移动到什么位置时,三角形ABO变成等腰直角三角形,请说明理由;
(3)在(2)中,如图②,△PA1A是等腰直角三角形,点P在反比例函数y= (x>0)的图象上,斜边A1A在x轴上,求点A1的坐标.

查看答案和解析>>

同步练习册答案