精英家教网 > 初中数学 > 题目详情
(2013•西城区一模)先阅读材料,再解答问题:
小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.
请你参考小明得出的结论,解答下列问题:

(1)如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).
①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);
②若在x轴的正半轴上有一点D,且∠ACB=∠ADB,则点D的坐标为
(7,0)
(7,0)

(2)如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.
分析:(1)①作出△ABC的两边的中垂线的交点,即可确定圆心,则外接圆即可作出;
②D就是①中所作的圆与x轴的正半轴的交点,根据作图写出坐标即可;
(2)当以AB为弦的圆与x轴正半轴相切时,对应的∠APB最大,根据垂径定理和勾股定理即可求解.
解答:解:(1)①

②根据图形可得,点D的坐标是(7,0);

(2)当以AB为弦的圆与x轴正半轴相切时,作CD⊥y轴,连接CP、CB.
∵A的坐标为(0,m),点B的坐标为(0,n),
∴D的坐标是(0,
m+n
2
),即BC=PC=
m+n
2

在直角△BCD中,BC=
m+n
2
,BD=
m-n
2

则CD=
BC2-BD2
=
mn

则OP=CD=
mn

故P的坐标是(
mn
,0).
点评:本题考查了垂径定理以及勾股定理,正确理解当以AB为弦的圆与x轴正半轴相切时,对应的∠APB最大,是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•西城区一模)上海原世博园区最大单体建筑“世博轴”被改造成一个综合性商业中心,该项目营业面积约130 000平方米,130 000用科学记数法表示应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西城区一模)如图,AF是∠BAC的平分线,EF∥AC交AB于点E.若∠1=25°,则∠BAF的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西城区一模)如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE运动到点E后停止,动点Q从点E开始沿EF-FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西城区一模)如图,点C在线段AB上,△DAC和△DBE都是等边三角形.
(1)求证:△DAB≌△DCE;
(2)求证:DA∥EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•西城区一模)在Rt△ABC中,∠ACB=90°,∠ABC=α,点P在△ABC的内部.
(1)如图1,AB=2AC,PB=3,点M、N分别在AB、BC边上,则cosα=
3
2
3
2
,△PMN周长的最小值为
3
3

(2)如图2,若条件AB=2AC不变,而PA=
2
,PB=
10
,PC=1,求△ABC的面积;
(3)若PA=m,PB=n,PC=k,且k=mcosα=nsinα,直接写出∠APB的度数.

查看答案和解析>>

同步练习册答案