3£®ÔĶÁÏÂÁвÄÁÏ£¬½â´ðÏÂÃæµÄÎÊÌ⣺
ÎÒÃÇÖªµÀ·½³Ì2x+3y=12ÓÐÎÞÊý¸ö½â£¬µ«ÔÚʵ¼ÊÎÊÌâÖÐÍùÍùÖ»ÐèÇó³öÆäÕýÕûÊý½â£®
Àý£ºÓÉ2x+3y=12£¬µÃ£ºy=$\frac{12-2x}{3}$=4-$\frac{2}{3}$x£¨x¡¢yΪÕýÕûÊý£©£®ÒªÊ¹y=4-$\frac{2}{3}$xΪÕýÕûÊý£¬Ôò$\frac{2}{3}$xΪÕýÕûÊý£¬¿ÉÖª£ºxΪ3µÄ±¶Êý£¬´Ó¶øx=3£¬´úÈëy=4-$\frac{2}{3}$x=2£®ËùÒÔ2x+3y=12µÄÕýÕûÊý½âΪ$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$£®
ÎÊÌ⣺
£¨1£©ÇëÄãÖ±½Óд³ö·½³Ì3x+2y=8µÄÕýÕûÊý½â$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£®
£¨2£©Èô$\frac{6}{x-3}$Ϊ×ÔÈ»Êý£¬ÔòÂú×ãÌõ¼þµÄÕýÕûÊýxµÄÖµÓÐB
A£®3¸ö         B£®4¸ö          C£®5¸ö          D£®6¸ö
£¨3£©¹ØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{x+2y=9}\\{2x+ky=10}\end{array}\right.$µÄ½âÊÇÕýÕûÊý£¬ÇóÕûÊýkµÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ý¶þÔªÒ»´Î·½³ÌµÄ½âµÃ¶¨ÒåÇó³ö¼´¿É£»
£¨2£©¸ù¾ÝÌâÒâµÃ³öx-3=6»ò3»ò2»ò1£¬Çó³ö¼´¿É£»
£¨3£©ÏÈÇó³öyµÄÖµ£¬¼´¿ÉÇó³ökµÄÖµ£®

½â´ð ½â£º£¨1£©·½³Ì3x+2y=8µÄÕýÕûÊý½âΪ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£¬
¹Ê´ð°¸Îª$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£»

£¨2£©ÕýÕûÊýÓÐ9£¬6£¬5£¬4£¬¹²4¸ö£¬
¹ÊÑ¡B£»

£¨3£©$\left\{\begin{array}{l}{x+2y=9¢Ù}\\{2x+ky=10¢Ú}\end{array}\right.$
¢Ù¡Á2-¢ÚµÃ£º£¨4-k£©y=8£¬
½âµÃ£ºy=$\frac{8}{4-k}$£¬
¡ßx£¬yÊÇÕýÕûÊý£¬kÊÇÕûÊý£¬
4-k=1£¬2£¬4£¬8£¬
¡àk=3£¬2£¬0£¬-4£¬
µ«k=3ʱ£¬x²»ÊÇÕýÕûÊý£¬¹Êk=2£¬0£¬-4£®

µãÆÀ ±¾Ì⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬¶þÔªÒ»´Î·½³ÌµÄ½âµÄÓ¦Óã¬ÄÜÁé»îÔËÓÃ֪ʶµãÇó³öÌØÊâ½âÊǽâ´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¶¯Îïѧ¼Òͨ¹ý´óÁ¿µÄµ÷²é¹À¼Æ£¬Ä³ÖÖ¶¯Îï»îµ½20ËêµÄ¸ÅÂÊΪ0.8£¬»îµ½25ËêµÄ¸ÅÂÊΪ0.6£¬ÔòÏÖÄê20ËêµÄÕâÖÖ¶¯Îï»îµ½25ËêµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®0.8B£®0.75C£®0.6D£®0.48

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô£¨m+2£©x${\;}^{{m}^{2}-3}$-2m=1£¬ÊǹØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì£¬Ôòm=£¨¡¡¡¡£©
A£®¡À2B£®2C£®-2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔĶÁ²ÄÁÏ£ºÈôm2-2mn+2n2-8n+16=0£¬Çóm¡¢nµÄÖµ£®
½â£º¡ßm2-2mn+2n2-8n+16=0£¬¡à£¨m2-2mn+n2£©+£¨n2-8n+16£©=0
¡à£¨m-n£©2+£¨n-4£©2=0£¬¡à£¨m-n£©2=0£¬£¨n-4£©2=0£¬¡àn=4£¬m=4£®
¸ù¾ÝÄãµÄ¹Û²ì£¬Ì½¾¿ÏÂÃæµÄÎÊÌ⣺
£¨1£©ÒÑÖªx2+2xy+2y2+2y+1=0£¬Çó2x+yµÄÖµ£»
£¨2£©ÒÑÖªa-b=4£¬ab+c2-6c+13=0£¬Çóa+b+cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¼ÆËã-3+|-5|µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®-2B£®2C£®-8D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª·½³Ì2xa-3-£¨b-2£©y|b|-1=4£¬ÊǹØÓÚx¡¢yµÄ¶þÔªÒ»´Î·½³Ì£¬Ôòa-2b=8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ò»»ú¶¯³µ³ö·¢Ê±ÓÍÏäÄÚÓÐÓÍ40L£¬ÐÐÊ»Èô¸ÉСʱºó˾»úÍ£³µ³Ô·¹£¬·¹ºó¼ÌÐøÐÐʻһ¶Îʱ¼äºóµ½Ä³¼ÓÓÍÕ¾£®Í¼12ÖбíʾµÄÊǸùý³ÌÖÐÓÍÏäÀïÊ£ÓàÓÍÁ¿Q£¨L£©ÓëÐÐʻʱ¼ät£¨h£©Ö®¼äµÄº¯Êý¹Øϵ£º

£¨1£©ÐÐÊ»2Сʱºó˾»ú¿ªÊ¼³Ô·¹£¬³Ô·¹ÓÃÁË1Сʱ£»
£¨2£©·¹ºóÐÐÊ»4Сʱµ½¼ÓÓÍÕ¾£¬µ½¼ÓÓÍվʱÓÍÏäÄÚ»¹ÓÐ10ÉýÓÍ£»
£¨3£©ÔÚ·¹Ç°Óë·¹ºóµÄÐÐÊ»¹ý³ÌÖУ¬Æû³µÃ¿Ð¡Ê±µÄºÄÓÍÁ¿ÊÇ5Éý£»
£¨4£©Èô¸Ã˾»ú²»¼ÓÓÍ£¬Æû³µ»¹ÄÜÐÐÊ»2Сʱ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¼ÆË㣺£¨-2£©4¡Á£¨$\frac{1}{2}$£©5=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬Õý·½ÐÎABCDÖУ¬¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬¡÷OBCÈƵãB˳ʱÕëÐýת60¡ãµÃµ½¡÷0¡äBC¡ä£¬ÈôAB=2£¬ÔòͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýÊÇ $\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸