精英家教网 > 初中数学 > 题目详情

已知抛物线与它的对称轴相交于点,与轴交于,与轴正半轴交于
(1)求这条抛物线的函数关系式;
(2)设直线轴于是线段上一动点(点异于),过轴交直线,过轴于,求当四边形的面积等于时点的坐标.

解:(1)由题意,知点是抛物线的顶点,

抛物线的函数关系式为
(2)由(1)知,点的坐标是.设直线的函数关系式为

,得的坐标是
设直线的函数关系式是
解得
直线的函数关系式是
点坐标为,则
轴,点的纵坐标也是
点坐标为
在直线上,
轴,点的坐标为


,当时,

点坐标为.  

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示);若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过定点A(1,0),它的顶点P是y轴正半轴上的一个动点,P点关于x轴的对称点为P′,过P′作x轴的平行线交抛物线于B、D两点(B点在y轴右侧),直线BA交y轴于C点.按从特殊到一般的规律精英家教网探究线段CA与CB的比值:
(1)当P点坐标为(0,1)时,写出抛物线的解析式并求线段CA与CB的比值;
(2)若P点坐标为(0,m)时(m为任意正实数),线段CA与CB的比值是否与(1)所求的比值相同?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1y=
12
x2
,把它平移后得抛物线C2,使C2经过点A(0,8),且与抛物线C1交于点B(2,n).在x轴上有一点P,从原点O出发以每秒1个单位的速度沿x轴正半轴的方向移动,设点P移动的时间为t秒,过点P作x轴的垂线l,分别交抛物线C1、C2于E、D,当直线l经过点B前停止运动,以DE为边在直线l左侧画正方形DEFG.
(1)判断抛物线C2的顶点是否在x轴上,并说明理由;
(2)当t为何值时,正方形DEFG在y轴右侧的部分的面积S有最大值?最大值为多少?
(3)设M为正方形DEFG的对称中心.当t为何值时,△MOP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过定点A(1,0),它的顶点Py轴正半轴上的一个动点P点关于x轴的对称点为P′,过P′ x轴的平行线交抛物线于BD两点(B点在y轴右侧),直线BAy轴于C点.按从特殊到一般的规律探究线段CACB的比值:

(1)当P点坐标为(0,1)时,写出抛物线的解析式并求线段CACB的比值;

(2)若P点坐标为(0,m)时(m为任意正实数),线段CACB的比值是否与⑴所求的比值相同?请说明理由.

 


查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(湖南郴州卷)数学 题型:解答题

(11·台州)(14分)已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为

点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直

线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.

(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.

(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.

①用含b的代数式表示m、n的值;

②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案