精英家教网 > 初中数学 > 题目详情
从长为3,6,7,9的4条线段中任取3条作三角形的边,能组成三角形的概率为(  )
A、
1
2
B、
3
4
C、
1
3
D、
1
4
考点:列表法与树状图法,三角形三边关系
专题:
分析:先根据三角形三边关系定理:三角形两边之和大于第三边判断出有几个符合条件的三角形,然后再根据概率公式求解即可.
解答:解:根据三角形三边关系定理:三角形两边之和大于第三边,
从长度分别为3、6、7、9的4条线段中任取3条作边,
能组成三角形的是:3,6,7;6,7,9;3,7,9;共三组,
故能组成三角形的概率为3÷4=
3
4

故选B.
点评:本题考查了求随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;三角形三边关系定理:三角形两边之和大于第三边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若关于x的方程(a-3)x2-2x+1=0有实数根,则a满足(  )
A、a≤4
B、a≤4且a≠3
C、a<4且a≠3
D、a≠3

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)作四边形ABCD,使∠A=∠C=90°;
(2)经过点A、B、D作⊙O,⊙O是否经过点C?你能说明理由吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+4的对称轴是直线x=
3
2
,与x轴交于点A、B两点,与y轴交于点C,并且点A的坐标为(-1,0).
(1)求抛物线的解析式; 
(2)过点C作CD∥x轴交抛物线于点D,连接AD交y轴于点E,连接AC,设△AEC的面积为S1,△DEC的面积为S2,求S1:S2的值.
(3)点F坐标为(6,0),连接DF,在(2)的条件下,点P从点E出发,以每秒3个单位长的速度沿E→C→D→F匀速运动;点Q从点F出发,以每秒2个单位长的速度沿F→A匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P、Q同时出发,设运动时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是直角三角形?请直接写出所有符合条件的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,
(1)画出△ABC中BC边上的高AM;
(2)画出△DBC中BC边上的高DN和DC边上的高BH;
(3)画出△ABC的角平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,AC=5,AB=13,以C为圆心作⊙C.
(1)若⊙C与AB相切,求⊙C的半径;
(2)若⊙C与直线AB相交,求⊙C半径r的取值范围;
(3)若⊙C与线段AB有两个交点,求⊙C半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:|sin45°-1|-
(cos30°-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰梯形的各边都与⊙O相切,⊙O的直径为8cm,梯形的腰长为10cm,则等腰梯形的上底长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

楠溪江某景点门票价格:成人票每张70元,儿童票每张35元,小明买20张门票共花了1225元,则买了
 
张儿童票.

查看答案和解析>>

同步练习册答案