18£®£¨1£©ÇëÄãÈÎÒâд³öÎå¸öÕýµÄÕæ·ÖÊý$\frac{1}{2}$£¬$\frac{1}{3}$£¬$\frac{1}{4}$£¬$\frac{1}{5}$£¬$\frac{1}{6}$£®¸øÿ¸ö·ÖÊýµÄ·Ö×ӺͷÖĸͬ¼ÓÒ»¸öÕýÊý£¬µÃµ½Îå¸öеķÖÊý$\frac{2}{3}$£¬$\frac{2}{4}$£¬$\frac{2}{5}$£¬$\frac{2}{6}$£¬$\frac{2}{7}$£®
£¨2£©±È½ÏÔ­À´Ã¿¸ö·ÖÊýÓë¶ÔӦзÖÊýµÄ´óС£¬¿ÉÒԵóöÏÂÃæµÄ½áÂÛ£» Ò»¸öÕæ·ÖÊý$\frac{a}{b}$£¨a£¬b¾ùΪÕýÊý£©£¬¸øÆä·Ö×Ó¡¢·Öĸͬ¼ÓÒ»¸öÕýÊýmµÃ$\frac{a+m}{b+m}$£¬ÔòÁ½¸ö·ÖÊýµÄ´óС¹ØϵÊÇ$\frac{a+m}{b+m}$£¾$\frac{a}{b}$£¬ÄãÄÜÓÃÉú»îÖеľ­Ñé»òÊýѧ֪ʶ˵Ã÷Õâ¸ö½áÂÛÂð£¿

·ÖÎö £¨1£©¸ù¾Ý·Ö×Ó·Öĸ¼Óͬһ¸öÕýÊý£¬¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾Ý²»µÈʽµÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÇëÄãÈÎÒâд³öÎå¸öÕýµÄÕæ·ÖÊý $\frac{1}{2}$£¬$\frac{1}{3}$£¬$\frac{1}{4}$£¬$\frac{1}{5}$£¬$\frac{1}{6}$£®¸øÿ¸ö·ÖÊýµÄ·Ö×ӺͷÖĸͬ¼ÓÒ»¸öÕýÊý£¬µÃµ½Îå¸öеķÖÊý $\frac{2}{3}$£¬$\frac{2}{4}$£¬$\frac{2}{5}$£¬$\frac{2}{6}$£¬$\frac{2}{7}$£»
£¨2£©$\frac{a+m}{b+m}$£¾$\frac{a}{b}$£¬
Õæ·ÖÊý$\frac{a}{b}$£¨a£¬b¾ùΪÕýÊý£©£¬µÃ
a£¼b£¬m£¾0£¬
am£¼bm£¬
am+ab£¼bm+ab
Á½±ß¶¼³ýÒÔ£¨b+m£©b£¬µÃ
$\frac{a}{b}$£¼$\frac{a+m}{b+m}$£¬
¹Ê$\frac{a+m}{b+m}$£¾$\frac{a}{b}$£®

µãÆÀ ±¾Ì⿼²éÁË·ÖʽµÄ¼Ó¼õ£¬ÀûÓÃÁ˲»µÈʽµÄÐÔÖÊ2£¬²»µÈʽµÄÐÔÖÊ1ÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®|x|=$\frac{3}{2}$£¬|y|=$\frac{1}{2}$£¬ÇÒxy£¾0£¬Ôòx•y=$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÓÃÒ»¸ù³¤ÎªlµÄÌúË¿£¬ÖƳÉÈçͼËùʾµÄ¿ò¼Ü£¬ÎÊ£º¿íxÊǶàÉÙʱ£¬¿ò¼ÜµÄÃæ»ý×î´ó£¿×î´óÃæ»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³°Ù»õÉ̳¡¾­ÏúÒ»ÖÖ¶ùͯ·þ×°£¬Ã¿¼þÊÛ¼Û50Ôª£¬Ã¿Ìì¿ÉÒÔÏúÊÛ80¼þ£¬ÎªÁËÓ­½Ó¡°ÁùÒ»¡±¹ú¼Ê¶ùͯ½Ú£¬É̳¡¾ö¶¨²ÉÈ¡½µ¼Û´ëÊ©ÒÔÀ©´óÏúÊÛÁ¿£¬¾­Êг¡µ÷²é·¢ÏÖ£ºÃ¿¼þͯװÿ½µ¼Û1Ôª£¬Æ½¾ùÿÌì¾Í¿É¶àÏúÊÛ10¼þ£®
£¨1£©µ±Ã¿¼þͯװ½µ¼Ûx£¨x£¼10£©ÔªÊ±£¬Ã¿Ìì¸ÃͯװµÄÓªÒµ¶îÊǶàÉÙÔª£¿
£¨2£©µ±x=5ʱ£¬Ã¿Ìì¸ÃͯװµÄÓªÒµ¶îÊǶàÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýy=-3£¨x-1£©2£¬µ±x£¼1ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£ºµãP£¨$\frac{3m-2}{5}$£¬$\frac{m+1}{3}$£©¹ØÓÚxÖáµÄ¶Ô³ÆµãΪ£¨0£¬-$\frac{m+1}{3}$£©£¬ÇóPµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®·Ö½âÒòʽ£®
£¨1£©x4-x3y£»
£¨2£©12ab+6b£»
£¨3£©5x2y+10xy2-15xy£»
£¨4£©3x£¨m-n£©+2£¨m-n£©£»
£¨5£©3£¨x-3£©2-6£¨3-x£©£»
£¨6£©a2b£¨a-b£©+3ab£¨a-b£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆËãÏÂÁи÷ʽ£º
£¨1£©$£¨\frac{5x{y}^{3}}{-3{z}^{2}}£©^{3}$£»
£¨2£©$£¨-\frac{{n}^{2}}{m}£©^{2}•£¨-\frac{{m}^{2}}{n}£©^{3}•£¨\frac{1}{mn}£©^{4}$£»
£¨3£©$£¨\frac{p-q}{p+q}£©^{2}•\frac{3p+3q}{2p-2q}¡Â\frac{pq}{{p}^{2}-{q}^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô´úÊýʽ6x-5µÄÖµÓë-$\frac{1}{4}$»¥Îªµ¹Êý£¬ÔòxµÄֵΪ$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸