精英家教网 > 初中数学 > 题目详情
如图,O是圆心,AB是半圆的直径,CD⊥AB,DE⊥OC,如果BD、CD的长都是有理数,那么图中长为有理数的线段还有    条.
【答案】分析:连接AC,BC,证△ADC∽△CDB,得到比例式,求出AD、OA、OB、OC、OD都是有理数,证△CDE∽△COD,得到比例式,求出CE、OE是有理数,根据三角形的面积公式求出DE是有理数,即可得到答案.
解答:解:如右图,连接AC,BC,
∵AB是圆的直径,
∴∠ACB=90°,
∵CD⊥AB,
∴∠A=∠CDA=∠CDB=90°,∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠A=∠BCD,
∴△ADC∽△CDB,
=
CD2=AD•BD,
∵BD、CD的长都是有理数,
∴AD是有理数,
∵AB=AD+BD,
∴AB是有理数,
∴OA、OB、OC、OD都是有理数,
∵CD⊥OD,DE⊥OC,
∴∠CDO=∠CED=90°,
∵∠DCE=∠DCO,
∴△CDE∽△COD,
=
CD2=CE•OC,
∵CD、OC是有理数,
∴CE是有理数,
∴OE是有理数,
根据三角形的面积公式得:CD×OD=OC×DE,
∴DE是有理数.
综上可知:AD、AB、OA、OB、OC、OD、DE、OE、CE的长为有理数,
故答案为:9.
点评:本题主要考查对圆周角定理,三角形的面积,相似三角形的性质和判定等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,O是圆心,半径OC⊥弦AB于点D,AB=8,CD=2,则OD等于(  )
A、2
B、3
C、2
2
D、2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,O是圆心,AB是半圆的直径,CD⊥AB,DE⊥OC,如果BD、CD的长都是有理数,那么图中长为有理数的线段还有
 
条.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是正三角形,AB=1,以A为圆心,AC为半径画弧,与BA的延长线交于点D;以B为圆心,BD为半径画弧,与CB的延长线交于E;以C为圆心,CE为半径画弧,与AC的延长线交于点F.那么曲线CDEF的长是(  )
A、3π
B、4π
C、
14
3
π
D、5π

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,O是圆心,AB是半圆的直径,CD⊥AB,DE⊥OC,如果BD、CD的长都是有理数,那么图中长为有理数的线段还有________条.

查看答案和解析>>

同步练习册答案