【题目】如图,在矩形ABCO中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.
(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
【答案】(1)(-,0);(3,3);(2)点M的坐标为(,),(2,1),(,).
【解析】(1)直线l1:当y=0时,2x+3=0,x=﹣
则直线l1与x轴坐标为(﹣,0)
直线l2:当y=3时,2x﹣3=3,x=3
则直线l2与AB的交点坐标为(3,3);
(2)①若点A为直角顶点时,点M在第一象限,连结AC,
如图1,∠APB>∠ACB>45°,
∴△APM不可能是等腰直角三角形,
∴点M不存在;
②若点P为直角顶点时,点M在第一象限,如图2,
过点M作MN⊥CB,交CB的延长线于点N,
则Rt△ABP≌Rt△PNM,
∴AB=PN=4,MN=BP,
设M(x,2x﹣3),则MN=x﹣4,
∴2x﹣3=4+3﹣(x﹣4),
x=,
∴M(,);
③若点M为直角顶点时,点M在第一象限,如图3,
设M1(x,2x﹣3),
过点M1作M1G1⊥OA,交BC于点H1,
则Rt△AM1G1≌Rt△PM1H1,
∴AG1=M1H1=3﹣(2x﹣3),
∴x+3﹣(2x﹣3)=4,
x=2
∴M1(2,1);
设M2(x,2x﹣3),
同理可得x+2x﹣3﹣3=4,
∴x=,
∴M2(,);
综上所述,点M的坐标为(,),(2,1),(,);
科目:初中数学 来源: 题型:
【题目】有筐白菜,以每筐千克为标准重量,超过的千克数记为正数,不足的千克数记为负数换后的记录如下: , , , , , , , .回答下列问题上:
(1)这筐白菜中最接近标准重量的这筐白菜重 千克.
(2)与标准重量比较, 筐白菜总计超过多少千克或不足多少千克?
(3)若白菜每千克元,则出售这筐白菜可卖多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△OAB、△OBC、△OCD、△ODE、△OEF和△OFA均为边长为a的等边三角形,点P为边BC上任意一点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)那么∠MPN=______,并求证PM+PN=3a;
(2)如图2,联结OM、ON.求证:OM=ON;
(3)如图3,OG平分∠MON,判断四边形OMGN是否为特殊四边形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com