精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD的边长是2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,连结EF. 则下列结论中:①S△CEF:S△AFB=1:4;②AB=AF; ③ ;④S四边形ABEF=.正确的序号是(      )

 A.①③           B.①③④

C.①②④         D.②④

 

【答案】

B

【解析】①在正方形ABCD的边长是2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,连结EF,则利用相似三角形的性质,面积比是相似边长平方的比,可知S△CEF:S△AFB=1:4,成立。

②AB=AF不满足对称,错误。

③延长BF交CD于H,  因为∠HBC=∠EAB(同为∠ABG的余角)

AB=BC

RT△ABE≅RT△BCH

∴CH=BE=BC/2=CD/2=AB/2

AB∥DC

∴△ABE∼△CHF

⇒CH/AB=CF/AF

∴CF=AF/2

即CF=AC/3

AC=AB=2∴CF=

④结合第一问中面积比得到S四边形ABEF=

故选B

A
 
 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案