精英家教网 > 初中数学 > 题目详情

方程与方程5x-2=7x的解相同.   (  

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

28、阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;
在解题中,我们会常常运用绝对值的几何意义:
例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;
例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为
1或-7

(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二元一次方程组
0.8x+0.7y=3
-8x-2y=7
,用加减法解该方程组时,将方程①两边同时乘以
 
,再将得到的方程与方程②两边相
 
,即可消去
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2+ax+b=0①,x2+bx+a=0②,方程①与方程②有且只有一个公共根,则a与b之间应满足的关系式为
a+b+1=0
a+b+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
.根据阅读材料:解决以下问题:
(1)已知x1,x2是方程x2+4x-3=0的两实数根,则x1+x2=
-4
-4
,x1•x2=
-3
-3

(2)已知x1,x2是方程x2+6x+3=0的两实数根,不解方程,试求
1
x1
+
1
x2
的值;
(3)已知x1,x2是方程x2-6x-5=0的两实数根,不解方程,试求
x2
x1
+
x1
x2
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

先阅读短文,再回答短文后面的问题.
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.
下面根据抛物线的定义,我们来求抛物线的方程.
如上图,建立直角坐标系xoy,使x轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合.设|KF|=p(p>0),那么焦点F的坐标为(数学公式,0),准线l的方程为x=-数学公式
设点M(x,y)是抛物线上任意一点,点M到l的距离为d,由抛物线的定义,抛物线就是满足|MF|=d的点M的轨迹.
∵|MF|=数学公式,d=|x+数学公式|∴数学公式=|x+数学公式|
将上式两边平方并化简,得y2=2px(p>0)①
方程①叫做抛物线的标准方程,它表示的抛物线的焦点在x轴的正半轴上,坐标是(数学公式,0),它的准线方程是x=-数学公式
一条抛物线,由于它在坐标平面内的位置不同,方程也不同.所以抛物线的标准方程还有其它的几种形式:y2=-2px,x2=2py,x2=-2py.这四种抛物线的标准方程,焦点坐标以及准线方程列表如下:
标准方程 交点坐标 准线方程
y2=2px(p>0)数学公式 x=-数学公式
y2=-2px(p>0) (-数学公式 x=数学公式
x2=2py(p>0) (0,数学公式 y=-数学公式
x2=-2py(p>0) (0,-数学公式 y=-数学公式
解答下列问题:
(1)①已知抛物线的标准方程是y2=8x,则它的焦点坐标是______,准线方程是______
②已知抛物线的焦点坐标是F(0,-6),则它的标准方程是______.
(2)点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程.
(3)直线数学公式经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段AB的长.

查看答案和解析>>

同步练习册答案