精英家教网 > 初中数学 > 题目详情
如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=
3
,BC=1,连接BF,分别交AC、DC、DE于点P、Q、R.
(1)求证:△BFG∽△FEG,并求出BF的长;
(2)观察图形,请你提出一个与点P相关的问题,并进行解答.(根据提出问题的层次和解答过程评分)
精英家教网
分析:(1)在△BFG中,BG=3BC=3,FG=AB=
3
,在△FEG中,FG=AB=
3
,EG=1,所以有
BG
FG
=
FG
EG
=
3
,且二者有一个公共角∠G,所以可得出两三角形相似.
(2)如果问题较为浅显,可以提问求证:∠PCB=∠REC,这个问题只需要运用两直线平行,同位角相等进行解答.此题为发散性题型,不唯一.
解答:(1)证明:∵△ABC≌△DCE≌△FEG
∴BC=CE=EG=
1
3
BG=1,即BG=3
∴FG=AB=
3

FG
EG
=
BG
FG
=
3
3
=
3

又∠BGF=∠FGE,
∴△BFG∽△FEG,
∵△FEG是等腰三角形,
∴△BFG是等腰三角形,
∴BF=BG=3;

(2)解:A层问题(较浅显的,仅用到了1个知识点).
例如:①求证:∠PCB=∠REB.(或问∠PCB与∠REB是否相等)等;
②求证:PC∥RE,(或问线段PC与RE是否平行)等.
B层问题(有一定思考的,用到了2~3个知识点).
例如:①求证:∠BPC=∠BFG等,求证:BP=PR等;
②求证:△ABP∽△CQP等,求证:△BPC∽△BRE等;
③求证:△ABP∽△DQR等;④求BP:PF的值等.
C层问题(有深刻思考的,用到了4个或4以上知识点,或用到了(1)中结论).
例如:①求证:△ABP≌△ERF;②求证:PQ=RQ等;③求证:△BPC是等腰三角形;
④求证:△PCQ≌△RDQ等;⑤求AP:PC的值等;⑥求BP的长;
⑦求证:PC=
3
3
(或求PC的长)等.
A层解答举例:求证:PC∥RE
证明:△ABC≌△DCE
∴∠PCB=∠REB
∴PC∥RE
B层解答举例:求证:BP=PR
证明:∠ACB=∠REB,
∴AC∥DE.
又BC=CE,∴BP=PR.
C层解答举例:求AP:PC的值.
解:AC∥FG,
PC
FG
=
BC
BG
=
1
3

∴PC=
3
3
,而AC=
3

∴AP=
3
-
3
3
=
2
3
3

∴AP:PC=2.
点评:此题主要考查了相似三角形的判定,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案