【题目】已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.
(1)求该抛物线的解析式;
(2)连接PB、PC,求△PBC的面积;
(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰三角形ABC的周长为13cm,AB=5cm
(1)若AB是底,则AC的长为_____________cm
(2)若AB是腰,则AC的长为_____________cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:函数y = (m+1) x+2 m﹣6,
(1)若函数图象过(﹣1 ,2),求此函数的解析式;
(2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式;
(3)求满足②条件的直线与此同时y =﹣3 x + 1 的交点。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(-1,0),(0,-3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相较于点E.
(1)求抛物线的解析式并直接写出点D的坐标;
(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;
(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com