【题目】如图,直线:()与,轴分别交于,两点,以为边在直线的上方作正方形,反比例函数和的图象分别过点和点.若,则的值为______.
【答案】-9
【解析】
作CH⊥y轴于点H,证明△BAO≌△CBH,可得OA=BH=-3b,OB=CH=-b,可得点C的坐标为(-b,-2b),点D的坐标为(2b,-3b),代入反比例函数的解析式,即可得出k2的值.
解:如图,作CH⊥y轴于点H,
∵四边形ABCD为正方形,
∴AB=BC,∠AOB=∠BHC=90°,∠ABC=90°
∴∠BAO=90°-∠OBA=∠CBH,
∴△BAO≌△CBH(AAS),
∴OA=BH,OB=CH,
∵直线l:(b<0)与x,y轴分别交于A,B两点,
∴A(3b,0),B(0,b),
∵b<0,
∴BH=-3b,CH=-b,
∴点C的坐标为(-b,-2b),
同理,点D的坐标为(2b,-3b),
∵k1=3,
∴(-b)×(-2b)=3,即2b2=3,
∴k2=2b×(-3b)=-6b2=-9.
故答案为:-9.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径的⊙O与BC交于点D,与AC交于点E,AD,BE相交于点H,过点B作⊙O的切线交AC的延长线于点F,若CD=BD.
(1)求证:AC=AB.
(2)若AH:DH=3:1,求tan∠CBF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )
A. B. aC. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像经过,两点.
(1)求该函数的解析式;
(2)若该二次函数图像与轴交于、两点,求的面积;
(3)若点在二次函数图像的对称轴上,当周长最短时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:
(1)线段BC的长为 cm.
(2)当运动时间t=2.5秒时,P、Q之间的距离是 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的二次函数y=ax2-(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.
(1)求a的值;
(2)若该二次函数的图象与直线y=-2x的一个交点为(2,m),求它的解析式;
(3)在(2)的条件下,直线y=-2x-4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD中,AB=6,点P是射线BC上的一动点,过点P作PE⊥PA交直线CD于E,连AE.
(1)如图1,若BP=2,求DE的长;
(2)如图2,若AP平分∠BAE,连PD,求tan∠DPE的值;
(3)直线PD,AE交于点F,若BC=4PC,则= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,.
(1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:;
(2)在图②中作,使它满足以下条件:
①圆心在边上;②经过点;③与边相切.
(尺规作图,只保留作图痕迹,不要求写出作法)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com