精英家教网 > 初中数学 > 题目详情

【题目】如图,将长方形纸片折叠,使边落在对角线上,折痕为,且点落在对角线处.若,则的长为_____

【答案】1.5

【解析】

首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△DEC,设ED=x,则DE=xAD=AC-CD=2AE=4-x,再根据勾股定理可得方程22+x2=4-x2,再解方程即可.

AB=3AD=4

DC=3BC=4

AC==5

根据折叠可得:△DEC≌△D'EC

D'C=DC=3,DE=D'E

ED=x,D'E=x,AD'=ACCD'=2AE=4x

RtAED'中:(AD')2+(ED')2=AE2

22+x2=(4x)2

解得:x=1.5.

ED的长为1.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1O为直线AB上一点过点O作射线OC使BOC=120°.将一直角三角板的直角顶点放在点O一边OM在射线OB另一边ON在直线AB的下方

1)将图1中的三角板绕点O逆时针旋转至图2使一边OMBOC的内部且恰好平分BOC此时直线ON是否平分AOC?请说明理由

2)将图1中的三角板绕点O以每秒10°的速度沿顺时针方向旋转一周在旋转的过程中t秒时直线ON恰好平分锐角AOC t的值为 秒(直接写出结果)

3)将图1中的三角板绕点O顺时针旋转至图3使ONAOC的内部试探索在旋转过程中AOMNOC的差是否发生变化?若不变请求出这个差值若变化请求出差的变化范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)计算:①.

②﹣12020+24÷(﹣2332×2

(2)化简求值:①

②先化简,再求值:2x32y2)﹣(x2y)﹣(x3y2+2x3),其中x=3y=2

(3)解方程:① 3x3+1 = x﹣(2x1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图①,ABCDEF,点GPH分别在直线ABCDEF上,连结PGPH,当点P在直线GH的左侧时,试说明∠AGP+EHP=∠GPH.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式).

解:如图①,∵ABCD   

∴∠AGP=∠GPD

CDEF

∴∠DPH=∠EHP   

∵∠GPD+DPH=∠GPH

∴∠AGP+EHP=∠GPH   

拓展:将图①的点P移动到直线GH的右侧,其他条件不变,如图②.试探究∠AGP、∠EHP、∠GPH之间的关系,并说明理由.

应用:如图③,ABCDEF,点GH分别在直线ABEF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QGQH.若∠GQH70°,则∠AGQ+EHQ   度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为点B(0,3),其顶点为C,对称轴为x=1,

(1)求抛物线的解析式;

(2)已知点M为y轴上的一个动点,当ABM为等腰三角形时,求点M的坐标;

(3)将AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长跑是中考体育必考项目之一,某中学为了了解九年级学生长跑的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800),按长跑时间长短依次分为A.B.C.D四个等级进行统计,制作出如下两个不完整的统计图.

根据所给信息,解答下列问题:

(1)在扇形统计用中,C对应的扇形圆心角是____度.

(2)补全条形统计图.

(3)该校九年有486名学生,请估计长跑测试成绩达到A级的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50/人,非节假日打折售票,节假日按团队人数分段定价售票,即人以下(含人)的团队按原价售票;超过人的团队,其中人仍按原价售票,超过人部分的游客打折售票.设某旅游团人数为人,非节假日购票款为(元),节假日购票款为(元).之间的函数图象如图所示.

1)观察图象可知:         

2)直接写出之间的函数关系式;

3)某旅行社导游王娜于51日带团,520日(非节假日)带团都到该景区旅游,共付门票款1900元,两个团队合计50人,求两个团队各有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题背景】

1)如图1的图形我们把它称为“8字形”,请说明A+∠B=∠C+∠D

【简单应用】

2)如图2APCP分别平分BADBCD,若ABC=36°ADC=16°

P的度数;

【问题探究】

3)如图3,直线AP平分BAD的外角FADCP平分BCD的外角BCE,若ABC=36°ADC=16°,请猜想P的度数,并说明理由.

【拓展延伸】

4)在图4中,若设CBCAP=CABCDP=CDB,试问PCB之间的数量关系为: ______ (用αβ表示P,不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB=1.

(1)求经过点O,A,E三点的抛物线解析式;

(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;

(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案