精英家教网 > 初中数学 > 题目详情

【题目】我们已经学习过反比例函数y= 的图象和性质,请回顾研究它的过程,对函数y= 进行探索.下列结论:
①图象在第一、二象限,②图象在第一、三象限,
③图象关于y轴对称,④图象关于原点对称,
⑤当x>0时,y随x增大而增大;当x<0时,y随x增大而增大,
⑥当x>0时,y随x增大而减小;当x<0时,y随x增大而增大,
是函数y= 的性质及它的图象特征的是: . (填写所有正确答案的序号)

【答案】①③⑥
【解析】解:列表:

x

﹣3

﹣2

﹣1

1

2

3

y

1

4

1

画图:

由函数y= 的图象可知此图象具有以下性质:
函数的图象在一、二象限,当x>0时,y随x增大而减小;当x<0时,y随x增大而增大;函数的图象关于y对称.
故选①③⑥.
【考点精析】解答此题的关键在于理解反比例函数的性质的相关知识,掌握性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠ABE=ACD=RtAE=ADABC=ACB.求证:∠BAE=CAD

请补全证明过程,并在括号里写上理由.

证明:在ABC中,

∵∠ABC=ACB

AB= ( )

RtABERtACD中,

=AC =AD

RtABERtACD( )

∴∠BAE=CAD( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).

(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C 的对边的比叫做∠A的邻弦,记作thi A,即thi A= = .请解答下列问题: 已知:在△ABC中,∠C=30°.
(1)若∠A=45°,求thi A的值;
(2)若thi A= ,则∠A=°;
(3)若∠A是锐角,探究thi A与sinA的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,点D、E分别在AC、BC上,且CDBC=ACCE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB、BC分别交于点F、G.
(1)求证:AC是⊙E的切线.
(2)若AF=4,CG=5,求⊙E的半径;
(3)若Rt△ABC的内切圆圆心为I,则IE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ACB=90°AC=BCADCEBECE,垂足分别为DE

1)证明:BCE≌△CAD

2)若AD=25cmBE=8cm,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一根24cm的筷子置于底面直径为15cm,高为8cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是( )

A. h≤17 B. h≥8 C. 15≤h≤16 D. 7≤h≤16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在RtABC中,AB=AC,BAC=90°,过点A的直线l绕点A旋转,BDlD,CElE.

(1)试说明:DE=BD+CE.

(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017黑龙江省齐齐哈尔市,第25题,10分)低碳环保,绿色出行的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150/分的速度骑行一段时间,休息了5分钟,再以m/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:

(1)a= b= m=

(2)若小军的速度是120/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;

(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?

(4)若小军的行驶速度是v/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.

查看答案和解析>>

同步练习册答案