精英家教网 > 初中数学 > 题目详情
如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的一个动点,过点P作PG⊥AB′于点G,作PH⊥DC于点H,试判断PG+PH的值是否为定值?若为定值,请求出这个定值;若不是定值,请说明理由.
(1)△CEB′≌△AED.
证明:由折叠和四边形ABCD为矩形可得:
AD=B′C,∠D=∠B′=90°,
在△CEB′和△AED中,
∠CEB′=∠DEA
∠B′=∠D
B′C=AD

∴△CEB′≌△AED(AAS).

(2)PG+PH的值是定值.
①当点P不与点A、C重合时,
延长HP交AB于点M,则PM⊥AB.
∵∠EAC=∠CAB,PG⊥AB′于点G,
∴PG=PM.
∴PG+PH=PM+PH=HM=AD.
∵∠EAC=∠CAB,∠CAB=∠ECA,
∴∠EAC=∠ECA.
∴AE=EC=DC-DE=AB-DE=8-3=5.
在Rt△ADE中,AD=
AE2-DE2
=
52-32
=4

∴PG+PH=AD=4.
②当点P与点A重合时,点G与点A重合,点H与点D重合,
∴PG+PH=0+AD=4.
③当点P与点C重合时,点G与点B′重合,点H与点C重合,
∴PG+PH=B′C=BC=AD=4.
综上说述,PG+PH的值是定值,且PG+PH=4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图的方格纸中,左边图形到右边图形的变换是(  )
A.向右平移7格
B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换
C.绕AB的中点旋转180°,再以AB为对称轴作轴对称
D.以AB为对称轴作轴对称,再向右平移7格

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为(  )
A.30°B.60°C.120°D.30°或60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了探索代数式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
CE=
(8-x)2+25
,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此时x=______;
(2)请你根据上述的方法和结论,试构图求出代数式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P点坐标为______;
(2)若P、A两点在抛物线y=-
4
3
x2+bx+c
上,求b,c的值;
(3)若直线y=kx+m平行于CP,且于(2)中的抛物线有且只有一个交点,求k,m的值;
(4)在(2)中抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大?若存在求此时M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色.
(1)GC的长为______,FG的长为______;
(2)着色面积为______;
(3)若点P为EF边上的中点,则CP的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,是用一张长方形纸条折成的.如果∠1=110°,那么∠2=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,动手操作:长为1,宽为a的长方形纸片(
1
2
<a<1
),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的长方形为正方形,则操作终止.当n=3时,a的值为(  )
A.
2
3
B.
3
4
C.
3
5
D.
3
4
3
5

查看答案和解析>>

同步练习册答案