精英家教网 > 初中数学 > 题目详情
6.如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∠B=∠3(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行)
∴∠C=∠AED(两直线平行,同位角相等).

分析 首先求出∠2=∠DFE,两直线平行可判断出AB∥EF,进而得到∠B=∠ADE,可判断出DE∥BC,由平行线的性质即可得出答案.

解答 解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),
∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
又∠B=∠3(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
∴∠C=∠AED(两直线平行,同位角相等).

点评 本题主要考查了平行线的判定与性质,熟知平行线的判定与性质的区别是解答此题的关键,即性质与判定的已知和结论正好相反,都是角的关系与平行线相关.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC中,AD⊥BC,BD=CD,点C在线段AE的垂直平分线上,若AB=8,BC=6,则根据现有条件,能否求出DE的值?若能,请把DE的值求出来;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知函数y=-3x+1,当x=2时,y=-5;当y=0时,x=$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,△ABC和△DEF都是直角三角形,其中∠A=∠D=α,∠C=∠F=90°,则$\frac{BC}{AB}$=$\frac{EF}{DE}$成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示是从上面看到的由小正方体搭成的几何体的形状图,小正方形内的数字表示该位置上正方体的个数.请画出从正面和左面看到的这个几何体的形状图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算
(1)$\root{3}{-64}$-$\sqrt{9}$+$\sqrt{1-(\frac{4}{5})^{2}}$
(2)$\sqrt{6}(\sqrt{\frac{8}{27}}-5\sqrt{3})÷\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程
(1)$\frac{x}{x-1}-\frac{2}{x}=1$
(2)$\frac{x+1}{x-1}-\frac{4}{{{x^2}-1}}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.分解因式:
(1)25(m+n+2)2-16(m-n)2
(2)-ab(a-b)2+a(b-a)2
(3)(x2-5)2+8(5-x2)+16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.证明:等腰三角形底边上任意一点到两腰的距离之和为一个常量.

查看答案和解析>>

同步练习册答案