精英家教网 > 初中数学 > 题目详情
28、(1)如图1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等;
(3)如图3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.
分析:(1)根据三角形的面积公式,只需过点A和BC的中点画直线即可;
(2)结合平行线间的距离相等和三角形的面积公式即可证明;
(3)结合(1)和(2)的结论进行求作.
解答:解:(1)取BC的中点D,过A、D画直线,则直线AD为所求;

(2)证明:∵l1∥l2
∴点E,F到l2之间的距离都相等,设为h.
∴S△EGH=GH•h,S△FGH=GH•h,
∴S△EGH=S△FGH
∴S△EGH-S△GOH=S△FGH-S△GOH
∴△EGO的面积等于△FGO的面积;

(3)解:取BC的中点D,连接MD,过点A作AN∥MD交BC于点N,过M、N画直线,则直线MN为所求.
点评:此题主要是根据三角形的面积公式,知:三角形的中线把三角形的面积等分成了相等的两部分;同底等高的两个三角形的面积相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网下列说法:
(1)如图1,已知PA=PB,则PO是线段AB的垂直平分线;
(2)对于反比例函数y=
2
x
,(x1,y1),(x2,y2)是其图象上两点,若x1<x2,则y1>y2; 
(3)对角线互相垂直平分的四边形是菱形;
(4)如图2,在△ABC中,∠A=30°,BC=2,则AC=4;
(5)一组对边平行的四边形是梯形;    
(6)y=
k
x
是反比例函数;
(7)若一个等腰三角形的两边长为2和3,那么它的周长为7,
其中正确的有(  )个.
A、0B、1C、2D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:AE=BF;
(2)为响应市人民政府“形象胜于生命”的号召,在甲建筑物上从A点到E点挂一长为30m的宣传条幅(如图2),在乙建筑物的顶部D点测得顶端A点的仰角为45°,测得条幅底端E点的俯角为30°,求底部不能直接到达的两建筑物之间的水平距离(答案可带根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知双曲线y=
k
x
(k>0)
与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为
 
;若点A的横坐标为m,则点B的坐标可表示为
 

(2)如图2,过原点O作另一条直线l,交双曲线y=
k
x
(k>0)
于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD,将一个45度角∝的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF.求证:EF=AE+CF
(1)小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路.
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长②将角∝绕D点继续旋转,使得角∝的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明.请你帮忙解决.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且AB=CD.
(1)试问OE=0F吗?请说明理由.
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.

查看答案和解析>>

同步练习册答案