分析 先根据折叠的性质得到∠DBC=∠DBE,再由AD∥BC得到∠DBC=∠BDE,则∠DBE=∠BDE,于是可判断BE=DE设AE=x,则DE=BE=8-x,然后在Rt△ABE中利用勾股定理得到x2+62=(8-x)2,再解方程即可.
解答 解:∵△BDC′是由△BDC折叠得到,
∴∠DBC=∠DBE,
∵AD∥BC,
∴∠DBC=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE
设AE=x,则DE=AD-AE=8-x,BE=8-x,
在Rt△ABE中,∵AE2+AB2=BE2,
∴x2+62=(8-x)2,解得x=$\frac{7}{4}$,
即AE的长为$\frac{7}{4}$.
点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com