【题目】如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC.
(1)求证:AC平分∠BAD;
(2)若AB=3,AC=2,求EC和PB的长.
【答案】(1)见解析;(2)EC=,PB=.
【解析】
(1)连接OC,如图,利用切线的性质得到OC⊥PE,则判断OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠DAC=∠OAC;
(2)利用圆周角定理得到∠ACB=90°,再利用勾股定理计算出BC=2,再证明Rt△ABC∽Rt△ACE,利用相似比计算出EC=,接着利用勾股定理计算出AE=,然后证明Rt△ABC∽Rt△ACE,从而利用相似比计算PB的长.
解:(1)证明:连接OC,如图,
∵PE是⊙O的切线,
∴OC⊥PE,
∵AE⊥PE,
∴OC∥AE,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OAC,
∴AC平分∠BAD;
(2)∵AB是⊙O的直径,
∴∠ACB=90°
在Rt△ABC中,BC===1,
在Rt△ABC和Rt△ACE中,
∵∠DAC=∠OAC,∠AEC=∠ACB=90°,
∴Rt△ABC∽Rt△ACE,
∴AC:AB=EC:BC,即2:3=EC:1,
∴EC=;
在Rt△ACE中,AE===,
又∵OC∥AE,
∴Rt△ABC∽Rt△ACE,
∴OC:AE=PO:PA,即:=(PB+):(PB+3),
∴PB=.
科目:初中数学 来源: 题型:
【题目】“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.
(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?
(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有 人;扇形统计图中a= ;
(2)补全条形统计图;
(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,直线y=-x+与坐标轴分别交于点A、B,且点C在x轴负半轴上,且AB:AC=1:2.
(1)求A、C两点的坐标;
(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,,,,点从点出发沿向点匀速运动,速度为,同时,点从点出发沿向点匀速运动,速度为,当点停止运动时,点也随之停止运动,过点做交于点,连接、.设运动的时间为.
(1)当时,求的值;
(2)是否存在某一时刻,使得的面积是平行四边形面积的?若存在,求出相应的值;若不存在,请说明理由;
(3)过点作交于点,是否存在某一时刻,使得在线段的垂直平分线上?若存在,求出相应的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一直线分别于轴、轴交于A、B两点,点A、点D关于原点对称,过点A的抛物线与射线AB交于另一点C,若将沿着CO所在的直线翻折得到,与重叠部分的面积为的.
(1)求B、D两点的坐标(用m的代数式表示).
(2)当落在抛物线上时,求二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,把抛物线 先向右平移1个单位长度,再向下平移4个单位长度,得到抛物线 ,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为M.
(1)写出h、k的值及点A、B的坐标;
(2)判断 的形状,并计算其面积;
(3)点P是抛物线上的一动点,在y轴上存在点Q,使以点A、B、P、Q为顶点组成的四边形是平行四边形,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位运动员在相同条件下各射靶次,每次射靶的成绩如下:
甲:,,,,,,,,,
乙:,,,,,,,,,
丙:,,,,,,,,,
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | |||
乙 | |||
丙 |
(2)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com