【题目】如图,在平行四边形 ABCD 中,过点 A 作 AE⊥DC 交 DC 的延长线于点 E,过点 D 作DF // EA 交 BA 的延长线于点 F.
(1)求证:四边形 AEDF 是矩形;
(2)连接BD,若 AB=AE=2,tan FAD ,求 BD 的长.
【答案】(1)见解析,(2).
【解析】
(1)由四边形ABCD是平行四边形,AE⊥DC,DF⊥BA,易证得四边形AEDF是平行四边形,继而证得四边形AEDF是矩形;
(2)由四边形AEDF是矩形,可得在Rt△AFD中tan∠FAD== ,继而求得BF的长,然后由勾股定理求得答案.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥DC,即AF∥ED,
∵AE⊥DC,DF⊥BA,
∴DF∥EA, ∴四边形AEDF是平行四边形,
∵AE⊥DE, ∴∠E=90°,
∴四边形AEDF是矩形;
(2)如图,连接BD, ∵四边形AEDF是矩形,AB=AE=2
∴FD=AE=2,∠F=90°,
∵在Rt△AFD中,tan∠FAD==,
AF=5,
AB=2, ∴BF=AB+AF=7,
在Rt△BFD中,BD=.
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东37°方向上的B处,求此时轮船所在的B处与灯塔P的距离(sin53°=0.8,sin37°=0.6,tan53°=1.3,结果精确到0.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DC是⊙O的直径,点B在圆上,直线AB交CD延长线于点A,且∠ABD=∠C.
(1)求证:AB是⊙O的切线;
(2)若AB=4cm,AD=2cm,求tanA的值和DB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)该抛物线有一点D(x,y),使得S△ABC=S△DBC,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 中,AB=AC, ∠BAC <60°,将线段 AB 绕点 A逆时针旋转 60°得到点 D, 点 E 与点 D 关于直线 BC 对称,连接 CD,CE,DE.
(1)依题意补全图形;
(2)判断△CDE 的形状,并证明;
(3)请问在直线CE上是否存在点 P,使得 PA - PB =CD 成立?若存在,请用文字描述出点 P 的准确位置,并画图证明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知二次函数.
(1)将化成的形式为________;
(2)此函数与轴的交点坐标为________;
(3)在平面直角坐标系中画出这个二次函数的图象(不用列表);
(4)直接写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于两点(点在 点左侧),对称轴为直线.
(1)的值为 ,在坐标系中利用描点法画出此抛物线;
··· | ··· | ||||||
··· | ··· |
(2)若直线过点且与抛物线交于点,请根据图象写出:当时,的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线交轴于点,交轴于点,点是射线上一动点(点不与点,重合),过点作垂直于轴,交直线于点,以直线为对称轴,将翻折,点的对称点落在轴上,以,为邻边作平行四边形.设点,与重叠部分的面积为.
(1)的长是__________,的长是___________(用含的式子表示);
(2)求关于的函数关系式,并写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,B点与C点是直线y=x﹣3与x轴、y轴的交点.D为线段AB上一点.
(1)求抛物线的解析式及A点坐标.
(2)若点D在线段OB上,过D点作x轴的垂线与抛物线交于点E,求出点E到直线BC的距离的最大值.
(3)D为线段AB上一点,连接CD,作点B关于CD的对称点B′,连接AB′、B′D
①当点B′落坐标轴上时,求点D的坐标.
②在点D的运动过程中,△AB′D的内角能否等于45°,若能,求此时点B′的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com