分析 当点P与C重合时,所构成的等边三角形APQ,当P与B重合时,所构成的等边三角形为△APQ′,线段QQ′的长就是Q点运动的路径,利用勾股定理求出即可.
解答 解:如图,Q点运动的路径为QQ′的长,
∵△ACQ和△ABQ′是等边三角形,
∴∠CAQ=∠BAQ′=60°,AQ=AC=AQ′=2cm,
∵∠BAC=90°,
∴∠QAQ′=90°,
由勾股定理得:QQ′=$\sqrt{A{Q}^{2}+AQ{′}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∴Q点运动的路径为2$\sqrt{2}$cm;
故答案为:2$\sqrt{2}$.
点评 本题考查了动点运动的轨迹、等边三角形的性质、等腰直角三角形的性质及勾股定理,找出Q点运动的路径是本题的关键,根据等边三角形和等腰直角三角形的特殊角求出△AQQ′是等腰直角三角形是突破口.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com