精英家教网 > 初中数学 > 题目详情
(2012•娄底)如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是(  )
分析:由AB⊥CD,CD⊥MN可知阴影部分的面积恰好为正方形MNEF外接圆面积的
1
4
,再根据圆的面积公式进行解答即可.
解答:解:∵AB⊥CD,CD⊥MN,
∴阴影部分的面积恰好为正方形MNEF外接圆面积的
1
4

∵正方形MNEF的四个顶点在直径为4的大圆上,
∴S阴影=
1
4
π×(
4
2
2=π.
故选D.
点评:本题考查的是扇形的面积及轴对称的性质,根据题意得出阴影部分的面积恰好为正方形MNEF外接圆面积的
1
4
是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•娄底)如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=
3.42
3.42
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,
3
≈1.732).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式(要求写出自变量x的取值范围);当x为何值时,y有最大值?并求y的最大值.

查看答案和解析>>

同步练习册答案