精英家教网 > 初中数学 > 题目详情

【题目】矩形OABC在平面直角坐标系中如图,已知AB=10,BC=8,EBC上一点,将ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y=(k>0)与AB相交于点F,则线段AF的长为(  )

A. B. C. 2 D.

【答案】B

【解析】

首先根据折叠的性质得到BE=DE,AB=AD,ABE=ADE=90°,然后利用勾股定理求得OD的长,从而得到DC=OCOD=106=4,设点E的坐标为则可以表示然后在RtECD中,利用勾股定理解得k值后即可求得反比例函数的解析式,代入y=8后求得x的值即可求得AF

∵将ABE沿AE折叠,点B刚好与OC边上点D重合,

BE=DE,AB=AD,ABE=ADE=90°,

AB=10,BC=8,

AO=BC=8,AD=AB=10,

∴由勾股定理得:

DC=OCOD=106=4,

设点E的坐标为

RtECD中,

即:

解得:k=30,

∴反比例函数的解析式是

y=8,

解得:

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:
A(﹣1,0)的距离跨度
B( ,﹣ )的距离跨度
C(﹣3,2)的距离跨度
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是

(2)如图2,在平面直角坐标系xOy中,图形G2为以C(1,0)为圆心,2为半径的圆,直线y=k(x+1)上存在到G2的距离跨度为2的点,求k的取值范围.

(3)如图3,在平面直角坐标系xOy中,射线OA:y= x(x≥0),圆C是以3为半径的圆,且圆心C在x轴上运动,若射线OA上存在点到圆C的距离跨度为2,直接写出圆心C的横坐标xc的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题.

某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、50.

(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?

(2)将30名学生捐款额分成下面5组,请你完成频数统计表:

(3)根据上表,作出频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:

(1)BD=DC;
(2)DE是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,对角线ACBD相交于点O,ADBC,BAD=DCB,若不增加任何字母和辅助线,要使得四边形ABCD是矩形,则还需要增加一个条件是_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连结MN,作AHMN,垂足为点H

(1)如图1,猜想AHAB有什么数量关系?并证明;

(2)如图2,已知∠BAC=45°,ADBC于点D,且BD=2,CD=3,求AD的长;

小萍同学通过观察图①发现,ABMAHM关于AM对称,AHNADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:

(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;

(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;

(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名工人一天可以加工零件,或者加工零件,每一个零件和两个零件可以组装成一套零件,某车间共有名工人,问应如何安排这些工人,使加工出来的零件刚好可以配套.

查看答案和解析>>

同步练习册答案