两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动) ,连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,四边形CDBF面积为 _______;
(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
(3)如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sin∠AED的值.
(1) (2)菱形(3)
【解析】解:(1) ………………………2分
(2)菱形 ………………………3分
∵CD∥BF,FC∥BD,
∴四边形CDBF是平行四边形 ……………………… 4分
∵DF∥AC,∠ACB=90O,
∴CB⊥DF …………………………… 5分
∴四边形CDBF是菱形 …………………………… 6分
(判断四边形CDBF是平行四边形,并证明正确,记2分)
(3)解法一:过D点作DH⊥AE于H,
则S△ADE= …………………………… 7分
又S△ADE= ……………………9分
∴在Rt△DHE中,sin∠AED= ……………………10分
解法二:∵△ADH∽△ABE …………………… 7分
∴ 即: ………………… 8分
∴ ……………………………… 9分
∴sin∠AED= ……………………………… 10分
(1)根据平移的性质,可得AD=BE,CF∥BD.所以三角形ACD的面积等于三角形BEF的面积,则梯形的面积就等于直角三角形ABC的面积;
(2)根据直角三角形一边上的中线等于斜边的一半,以及平移的性质可以证明该四边形的四条边相等,则该四边形是菱形.
(3)根据三角函数的概念解答
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com