精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边三角形ABC 中,D是边AC上一点,连接BD,将ΔBCD绕点B逆时针旋转60°,得到ΔBAE,连接ED.BC=5,BD=4.5,则下列结论错误的是( )

A.AEBCB.ADE=BDC

C.ΔBDE是等边三角形D.ΔADE的周长是9.5

【答案】B

【解析】

首先由旋转的性质可知∠EBD=ABC=C=60°,所以看得AEBC,先由△ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CDBD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判断出△BDE是等边三角形,故DE=BD=4.5,故△AED的周长=AE+AD+DE=AC+BD=9.5,问题得解.

解:∵△ABC是等边三角形,
∴∠ABC=C=60°,
∵将△BCD绕点B逆时针旋转60°,得到△BAE
∴∠EAB=C=ABC=60°,
AEBC,故选项A正确;
∵△ABC是等边三角形,
AC=AB=BC=5
∵△BAEBCD逆时针旋旋转60°得出,
AE=CDBD=BE,∠EBD=60°,
AE+AD=AD+CD=AC=5
∵∠EBD=60°,BE=BD
∴△BDE是等边三角形,故选项C正确;
DE=BD=4.5
∴△AED的周长=AE+AD+DE=AC+BD=9.5,故选项D正确;
而选项B没有条件证明∠ADE=BDC
∴结论错误的是B
故选择:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h20t5t2.下列叙述正确的是(  )

A. 小球的飞行高度不能达到15m

B. 小球的飞行高度可以达到25m

C. 小球从飞出到落地要用时4s

D. 小球飞出1s时的飞行高度为10m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2.

(1)求OD的长.

(2)求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,F是⊙O上一点,连接FOFB.C中点,过点CCDAB,垂足为DCDFB于点ECGFB,交AB的延长线于点G.

1)求证:CG是⊙O的切线;

2)若BOF=120°,且CE=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的内切圆,切点分别为D、E、F,A=80°,点P为⊙O上任意一点(不与E、F重合),则∠EPF=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.

(1)求水柱所在抛物线(第一象限部分)的函数表达式;

(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?

(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生小阳,小杰和小凡到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为10/千克,下面是他们在活动结束后的对话.

小阳:如果以12/千克的价格销售,那么每天可售出300千克.

小杰:如果以15/千克的价格销售,那么每天可获取利润750元.

小凡:我通过调查验证发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.

(1)求y(千克)与x(元)(x>0)的函数关系式;

(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点ECD边上,点GBC的延长线上,设以线段ADDE为邻边的矩形的面积为,且.

⑴求线段CE的长;

⑵若点HBC边的中点,连结HD,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.

(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;

(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?

(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?

查看答案和解析>>

同步练习册答案