精英家教网 > 初中数学 > 题目详情
11.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是(  )
A.众数是82B.中位数是82C.极差是30D.平均数是82

分析 根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.

解答 解:将数据从小到大排列为:65,76,82,82,86,95,
A、众数是82,说法正确;
B、中位数是82,说法正确;
C、极差为95-65=30,说法正确;
D、平均数=$\frac{65+76+82+82+86+95}{6}$=81≠82,说法错误;
故选:D.

点评 本题考查了极差、中位数、众数及平均数的知识,属于基础题,解答本题的关键是掌握各部分的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间为x(h)间的函数关系如图,有下列说法:
 ①出租车的速度为100千米/时;②客车的速度为60千米/时;
③两车相遇时,客车行驶了3.75小时;④相遇时,客车离乙地的路程为225千米,其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.
(1)写出图中所有与$\overrightarrow{AD}$互为相反向量的向量:$\overrightarrow{DA}$,$\overrightarrow{CE}$,$\overrightarrow{EB}$;
(2)求作:$\overrightarrow{AD}-\overrightarrow{AE}$、$\overrightarrow{AB}+\overrightarrow{DC}$.(保留作图痕迹,写出结果,不要求写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为1,∠CBD=30°,则图中阴影部分的面积;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=$\frac{2}{3}$,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.点M(4-2a,a+5)在第二象限,求出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.
(1)求y与x的函数关系式;
(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的$\frac{3}{5}$,那么他的月收入最高能达到多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读下列材料:
2016年6月24日,以“共赴百合之约•梦圆世园延庆”为主题的第二届北京百合文化节在延庆区世界葡萄博览园拉开帷幕,本届百合文化节突出了2019年世界园艺博览会元素,打造“一轴、四片区、五主景”的百合主题公园,为市民呈现百合的饕餮盛宴.
据介绍,四片区的花海景观是由“丽花秀”、“画卷”、“妫河谣”和“水云天”组成.设置在科普馆的“丽花秀”,借鉴西班牙的镶嵌艺术,利用小丽花打造大型立体景观.这里种植的小丽花的株数比2015年增加了10%;设置在葡萄盆栽区的“画卷”,由9个模块组成一幅壮观的“画卷”,这里种植了40万株的葡萄,有1014个世界名优新品.设置在主题餐厅东侧的“妫河谣”,利用流淌的线条,营造令人震撼的百合花溪;这里的百合有240个品种,种植达到220万株,比2015年多了70万株.设置在科普馆东侧的“水云天”,设计体现了“水天交融”的流畅曲线美,种植的50万株向日葵花与100亩紫色的薰衣草交相辉映,仿佛美丽的画廊.
据主办方介绍,2015年第一届百合文化节,种植的百合有230多个品种,种植小丽花18万株;葡萄品种总数达600多种,种植了30万株; 向日葵花也达到了25万株.
根据以上材料解答下列问题:
(1)2016年第二届北京百合文化节,种植的小丽花的株数为19.8万株;
(2)选择统计表或统计图,将2015、2016年百合文化节期间在世葡园种植的百合、小丽花、葡萄的株数表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,四边形ABCD是矩形,将矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.求证:OA=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.八月份某学校计划在总费用2300元的限额内,租用汽车送234名运动员和6名教练到外地参加第二届全州青少年运动会,每辆汽车上至少要有1名教练,现在甲、乙两种大客车,它们的载客量和租金如表:
甲种客车乙种客车
载客量/(人/辆)4530
租金/(元/辆)400280
(1)共需租多少辆汽车?
(2)有几种租车方案;
(3)最节省费用的是哪种租车方案?

查看答案和解析>>

同步练习册答案