精英家教网 > 初中数学 > 题目详情

如图所示,经过平面直角坐标系的原点O,交x轴于A,交y轴于C,OC=2,∠OBA=30°,求点A和的坐标.

答案:略
解析:

解:连结AC,∵∠AOC=90°,∴AC的直径.∵=

∴∠OCA=B=30°,在RtOCA中,∵

,∴

D,∴.∵,∴,∴


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,某隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)以矩形一边EF所在直线为x轴,经过隧道顶端最高点H且垂直于EF的直线为y轴,建立如图所示的平面直角坐标系,求出此抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中,用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,某隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)以矩形一边EF所在直线为x轴,经过隧道顶端最高点H且垂直于EF的直线为y轴,建立如图所示的平面直角坐标系,求出此抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中,用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2,0)、C(6,0).过点AADx轴交抛物线于点D,过点DDEx轴,垂足为点EM是四边形OADE的对角线的交点,点Fy轴负半轴上,且F(0,-2).

(1)求抛物线的解析式,并直接写出四边形OADE的形状;

(2)当点PQC、F两点同时出发,均以每秒1个长度单位的速度沿CBFA方向

运动,点P运动到OPQ两点同时停止运动.设运动的时间为t秒,在运动过

程中,以PQOM四点为顶点的四边形的面积为S,求出St之间的函数关

系式,并写出自变量的取值范围;

(3)在抛物线上是否存在点N,使以B、C、FN为顶点的四边形是梯形?若存在,直

接写出点N的坐标;不存在,说明理由。

 


第23题图(1)

 

查看答案和解析>>

科目:初中数学 来源:2008年《海峡教育报》初中数学综合练习(五)(解析版) 题型:解答题

如图,某隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)以矩形一边EF所在直线为x轴,经过隧道顶端最高点H且垂直于EF的直线为y轴,建立如图所示的平面直角坐标系,求出此抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中,用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.

查看答案和解析>>

同步练习册答案